Câu hỏi:

16/12/2025 60 Lưu

Phần 1. Câu trắc nghiệm nhiều phương án chọn.

Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án đúng nhất.

Rút gọn biểu thức \[P = {x^{\frac{1}{3}}}.\sqrt[6]{x}\] với \[x > 0\].

A. \[P = \sqrt x \].

B. \[P = {x^{\frac{1}{8}}}\]. 
C. \[P = {x^{\frac{2}{9}}}\]. 
D. \[P = {x^2}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với \[x > 0\], ta có \[P = {x^{\frac{1}{3}}}.{x^{\frac{1}{6}}}\]\[ = {x^{\frac{1}{3} + \frac{1}{6}}}\]\[ = {x^{\frac{1}{2}}}\]\[ = \sqrt x \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]

Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].

Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].

Vậy \[a = 2\] là giá trị cần tìm.

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, góc ABC= 60 độ, SO vuông góc (ABCD) và SO = 3a/4, đặt x = d(O,{SAB)), y = d(D,(SAB), z = d(CD,SA). Các mệnh đề sau đúng hay sai? (ảnh 1)

Tam giác \(ABC\) đều cạnh \(a\) nên đường cao \(CM = \frac{{a\sqrt 3 }}{2}\). Gọi \(N\) là trung điểm của \(AM\) \( \Rightarrow ON \bot AB;ON = \frac{{a\sqrt 3 }}{4}\).

Kẻ \(OH \bot SN\)\( \Rightarrow d\left( {O,\left( {SAB} \right)} \right) = OH\).

\[\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{N^2}}}\]; \[ON = \frac{1}{2}CM = \frac{{a\sqrt 3 }}{4}\]; \[SO = \frac{{3a}}{4} \Rightarrow OH = \frac{{3a}}{8}\].

\(x = d\left( {O,\left( {SAB} \right)} \right) = \frac{{3a}}{8}\), \(y = d\left( {D,\left( {SAB} \right)} \right) = 2.d\left( {O,\left( {SAB} \right)} \right) = 2x\), \(z = d\left( {CD,SA} \right)\)\( = d\left( {D,\left( {SAB} \right)} \right) = 2x\).

Vậy \(x + y + z = 5x = \frac{{15a}}{8}\).

Câu 4

a) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại điểm có hoành độ là \(x = {\log _3}2\).

Đúng
Sai

b) Bất phương trình \(f\left( x \right) \ge  - 1\) có nghiệm duy nhất.

Đúng
Sai

c) Bất phương trình \(f\left( x \right) \ge 0\) có tập nghiệm là: \(\left( { - \infty ;{{\log }_3}2} \right)\).

Đúng
Sai
d) Đường thẳng \(y = 0\) cắt đồ thị hàm số \(\left( C \right)\) tại \(2\) điểm phân biệt.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

Một trường học có tỉ lệ học sinh thích bóng đá là \(45\% \), thích bóng rổ là \(60\% \) và thích cả hai môn này là \(30\% \). Tính xác suất để gặp một học sinh trong trường mà học sinh đó không thích bóng đá hoặc bóng rổ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Xác suất để chọn được 1 học sinh nam ở trường không thuận tay trái là: \(\frac{{273}}{{800}}{\rm{. }}\)

Đúng
Sai

b) Xác suất để chọn được 1 học sinh nữ ở trường không thuận tay trái là: \(\frac{{89}}{{160}}{\rm{. }}\)

Đúng
Sai

c) Xác suất để chọn được 1 học sinh nam, 1 học sinh nữ ở trường thuận tay trái lần lượt là: \(\frac{{11}}{{160}}{\rm{ v\`a  }}\frac{{27}}{{800}}{\rm{. }}\)

Đúng
Sai
d) Xác suất để chọn ngẫu nhiên 5 học sinh ở trường trong đó có đúng 1 học sinh nam và 1 học sinh nữ thuận tay trái là:\[\frac{{297}}{{128000}}\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP