Câu hỏi:

16/12/2025 7 Lưu

Một cái hộp hình lập phương, bên trong nó đựng một mô hình đồ chơi có dạng hình chóp tứ giác đều mà đỉnh của hình chóp đó trùng với tâm của một mặt chiếc hộp, giả sử hình vuông đáy của hình chóp trùng với một mặt của chiếc hộp (mặt này cùng với mặt chứa đỉnh hình chóp là hai mặt đối nhau). Biết cạnh của chiếc hộp bằng \(30\;cm\), hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong).

Biết cạnh của chiếc hộp bằng 30cm, hãy tính thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp (mô hình đồ chơi được làm bởi chất liệu nhựa đặc bên trong). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(18000\left( {\;c{m^3}} \right)\)

Lời giải

Thể tích cái hộp (khối lập phương) là: \({V_1} = {30^3} = 27000\left( {\;c{m^3}} \right)\).

Xét đồ chơi có dạng hình chóp tứ giác đều, chiều cao của hình chóp bằng với một cạnh của hình lập phương, hay \(h = 30\;cm\), đáy của hình chóp có diện tích \(S = {30^2} = 900\;c{m^2}\).

Thể tích khối đồ chơi (khối chóp tứ giác đều) là:

\({V_2} = \frac{1}{3}Sh = \frac{1}{3} \cdot 900 \cdot 30 = 9000\left( {\;c{m^3}} \right){\rm{. }}\)

Thể tích phần không gian bên trong chiếc hộp không bị chiếm bởi mô hình đồ chơi dạng hình chóp: \(V = {V_1} - {V_2} = 27000 - 9000 = 18000\left( {\;c{m^3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2034

Lời giải

 Giả sử sau \(n\) năm dân số Việt Nam là \({113.10^6}\) ( người).

\( \Rightarrow {113.10^6} = {91,7.10^6}.{\left( {1 + 1,1\% } \right)^n}\) \( \Leftrightarrow {\left( {1,01} \right)^n} = \frac{{1130}}{{917}} \Leftrightarrow n = {\log _{1,011}}\frac{{1130}}{{917}} = 19\)

Vậy đến năm 2034 thì dân số Việt Nam là \(113\) triệu người.

Câu 2

a) Ta có \[\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\]

Đúng
Sai

b) Với \(a =  - 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai

c) Với \(a = 2\) thì hàm số có đạo hàm tại \[x = 1\]

Đúng
Sai
d) Với \(a = {m_0}\) thì hàm số có đạo hàm tại \[x = 1\], khi đó : \(\mathop {\lim }\limits_{x \to {m_0}} \left( {{x^2} + 2x - 3} \right) = 5\)
Đúng
Sai

Lời giải

a) Đúng

b) Sai

c) Đúng

d) Đúng

Để hàm số có đạo hàm tại \[x = 1\] thì trước hết \[f(x)\] phải liên tục tại \[x = 1\]

Hay \[\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2 = f(1) = a\].

Khi đó, ta có:\[\mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f(1)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{{{x^2} - 1}}{{x - 1}} - 2}}{{x - 1}} = 1\].

Vậy \[a = 2\] là giá trị cần tìm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{2x}}{{{x^2} - 1}}\).

B. \(\frac{{ - 2x}}{{{x^2} - 1}}\).       
C. \(\frac{1}{{{x^2} - 1}}\). 
D. \(\frac{x}{{1 - {x^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(P(X) = \frac{5}{{18}}\). 

B. \(P(X) = \frac{5}{8}\). 
C. \(P(X) = \frac{7}{{18}}\). 
D. \(P(X) = \frac{7}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP