Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Biết \(SA = 2a\) và tam giác \(ABC\) vuông tại \(A\) có \(AB = 3a\), \(AC = 4a\). Tính thể tích khối chóp \(S.ABC\) theo \(a\).
A. \(12{a^3}\).
Quảng cáo
Trả lời:
Ta có \({S_{ABC}} = \frac{1}{2}.3a.4a = 6{a^2}\); \[{V_{SABC}} = \frac{1}{3}.SA.{S_{ABC}} = \frac{1}{3}.2a.6{a^2} = 4{a^3}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{7}{{12}}{a^3}\)
Lời giải
\(\begin{array}{l}V = \frac{1}{3}\left( {{S_{ABCD}} + {S_{MNPQ}} + \sqrt {{S_{ABCD}} \cdot {S_{MNPQ}}} } \right) \cdot O{O^\prime }\\{S_{ABCD}} = {a^2}\\{S_{MNPQ}} = {\left( {\frac{1}{2}a} \right)^2} = \frac{1}{4}{a^2}\\ \Rightarrow V = \frac{1}{3}\left( {{a^2} + \frac{1}{4}{a^2} + \sqrt {{a^2} \cdot \frac{1}{4}{a^2}} } \right) \cdot a = \frac{7}{{12}}{a^3}\end{array}\)
Câu 2
A. \(\left( { - 1;6} \right)\) .
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
d) \({\log _b}\frac{a}{c} < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(AN \bot BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
