Câu hỏi:

16/12/2025 12 Lưu

Cho hình chóp \[S.ABC\] có hai mặt bên \[\left( {SAB} \right)\] và \[\left( {SAC} \right)\] vuông góc với đáy \[\left( {ABC} \right)\], tam giác \[ABC\] vuông cân ở \(A\) và có đường cao \[AH,{\rm{ }}(H \in BC)\]. Gọi \(O\) là hình chiếu vuông góc của \(A\) lên \[\left( {SBC} \right)\]. Các mệnh đề sau đúng hay sai?

a) \[SC \bot \left( {ABC} \right)\].   

Đúng
Sai

b) \[\left( {SAH} \right) \bot \left( {SBC} \right)\].

Đúng
Sai

c) \[O \in SC\]. 

Đúng
Sai

d) Góc giữa \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] là góc \[\widehat {SBA}\].

Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Sai

d) Sai

Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với đáy (ABC) tam giác ABC vuông cân ở A và có đường cao AH H thuộc BC. Gọi O là hình chiếu vuông góc của A lên (SBC). (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\left( {SAB} \right) \cap \left( {SAC} \right) = SA}\\{\left( {SAC} \right) \bot \left( {ABC} \right)}\\{\left( {SAB} \right) \bot \left( {ABC} \right)}\end{array} \Rightarrow SA} \right. \bot \left( {ABC} \right)\).

Gọi \(H\) là trung điểm của \(BC\)\( \Rightarrow AH \bot BC\)

mà \(BC \bot SA\) \( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAH} \right)\).

Khi đó \(O\) là hình chiếu vuông góc

của \(A\) lên \(\left( {SBC} \right)\)

Thì suy ra \[O \in SI\] và \(\widehat {\left( {\left( {SBC} \right),\left( {ABC} \right)} \right)} = \widehat {SHA}\).

Vậy đáp án b đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y =  - 3x + 6\]   

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]

Đúng
Sai

c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1 

Đúng
Sai

d) Có 2 phương trình tiếp tuyến của (C) tại giao điểm (C) với trục tung 

Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

Hàm số đã cho xác định \[D = \mathbb{R}\]

Ta có: \[y' = 3{x^2} + 6x\]

a) Phương trình tiếp tuyến \[\left( t \right)\]tại \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] có phương trình : \[y = y'\left( { - 1} \right)\left( {x + 1} \right) + 3\]

Ta có: \[y'\left( { - 1} \right) =  - 3\], khi đó phương trình \[\left( t \right)\] là: \[y =  - 3x + 6\]

b) Thay \[x = 2\] vào đồ thị của (C) ta được \[y = 21\].

phương trình \[\left( t \right)\] là: \[y = 24x - 27\]

c) Thay \[y = 1\] vào đồ thị của (C) ta được \[{x^2}\left( {x + 3} \right) = 0 \Leftrightarrow x = 0\] hoặc \[x =  - 3\].

phương trình \[\left( t \right)\] là: \[y = 1\], \[y = 9x + 28\]

d) Trục tung Oy : \[x = 0 \Rightarrow y = 1\]. phương trình \[\left( t \right)\] là: \[y = 1\]

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Câu 3

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).   

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\).

Đúng
Sai

d) \({\log _b}\frac{a}{c} < 0\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 1;6} \right)\) .   

B. \(\left( {\frac{5}{2};6} \right)\). 
C. \(\left( { - \infty ;6} \right)\). 
D. \(\left( {6; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y + 16 =  - 9\left( {x + 3} \right)\]. 

B. \[y - 16 =  - 9\left( {x - 3} \right)\].  
C. \[y =  - 9\left( {x + 3} \right)\].   
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP