Cho hình chóp \[S.ABC\] có hai mặt bên \[\left( {SAB} \right)\] và \[\left( {SAC} \right)\] vuông góc với đáy \[\left( {ABC} \right)\], tam giác \[ABC\] vuông cân ở \(A\) và có đường cao \[AH,{\rm{ }}(H \in BC)\]. Gọi \(O\) là hình chiếu vuông góc của \(A\) lên \[\left( {SBC} \right)\]. Các mệnh đề sau đúng hay sai?
a) \[SC \bot \left( {ABC} \right)\].
b) \[\left( {SAH} \right) \bot \left( {SBC} \right)\].
c) \[O \in SC\].
d) Góc giữa \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] là góc \[\widehat {SBA}\].
Quảng cáo
Trả lời:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\left( {SAB} \right) \cap \left( {SAC} \right) = SA}\\{\left( {SAC} \right) \bot \left( {ABC} \right)}\\{\left( {SAB} \right) \bot \left( {ABC} \right)}\end{array} \Rightarrow SA} \right. \bot \left( {ABC} \right)\).
Gọi \(H\) là trung điểm của \(BC\)\( \Rightarrow AH \bot BC\)
mà \(BC \bot SA\) \( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAH} \right)\).
Khi đó \(O\) là hình chiếu vuông góc
của \(A\) lên \(\left( {SBC} \right)\)
Thì suy ra \[O \in SI\] và \(\widehat {\left( {\left( {SBC} \right),\left( {ABC} \right)} \right)} = \widehat {SHA}\).
Vậy đáp án b đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(\frac{7}{{12}}{a^3}\)
Lời giải
\(\begin{array}{l}V = \frac{1}{3}\left( {{S_{ABCD}} + {S_{MNPQ}} + \sqrt {{S_{ABCD}} \cdot {S_{MNPQ}}} } \right) \cdot O{O^\prime }\\{S_{ABCD}} = {a^2}\\{S_{MNPQ}} = {\left( {\frac{1}{2}a} \right)^2} = \frac{1}{4}{a^2}\\ \Rightarrow V = \frac{1}{3}\left( {{a^2} + \frac{1}{4}{a^2} + \sqrt {{a^2} \cdot \frac{1}{4}{a^2}} } \right) \cdot a = \frac{7}{{12}}{a^3}\end{array}\)
Câu 2
A. \(\left( { - 1;6} \right)\) .
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
d) \({\log _b}\frac{a}{c} < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(AN \bot BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
