Cho hình chóp \[S.ABC\] có hai mặt bên \[\left( {SAB} \right)\] và \[\left( {SAC} \right)\] vuông góc với đáy \[\left( {ABC} \right)\], tam giác \[ABC\] vuông cân ở \(A\) và có đường cao \[AH,{\rm{ }}(H \in BC)\]. Gọi \(O\) là hình chiếu vuông góc của \(A\) lên \[\left( {SBC} \right)\]. Các mệnh đề sau đúng hay sai?
a) \[SC \bot \left( {ABC} \right)\].
b) \[\left( {SAH} \right) \bot \left( {SBC} \right)\].
c) \[O \in SC\].
d) Góc giữa \[\left( {SBC} \right)\] và \[\left( {ABC} \right)\] là góc \[\widehat {SBA}\].
Quảng cáo
Trả lời:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{\left( {SAB} \right) \cap \left( {SAC} \right) = SA}\\{\left( {SAC} \right) \bot \left( {ABC} \right)}\\{\left( {SAB} \right) \bot \left( {ABC} \right)}\end{array} \Rightarrow SA} \right. \bot \left( {ABC} \right)\).
Gọi \(H\) là trung điểm của \(BC\)\( \Rightarrow AH \bot BC\)
mà \(BC \bot SA\) \( \Rightarrow BC \bot \left( {SAH} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAH} \right)\).
Khi đó \(O\) là hình chiếu vuông góc
của \(A\) lên \(\left( {SBC} \right)\)
Thì suy ra \[O \in SI\] và \(\widehat {\left( {\left( {SBC} \right),\left( {ABC} \right)} \right)} = \widehat {SHA}\).
Vậy đáp án b đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y = - 3x + 6\]
b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]
c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1
d) Có 2 phương trình tiếp tuyến của (C) tại giao điểm (C) với trục tung
Lời giải
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Hàm số đã cho xác định \[D = \mathbb{R}\]
Ta có: \[y' = 3{x^2} + 6x\]
a) Phương trình tiếp tuyến \[\left( t \right)\]tại \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] có phương trình : \[y = y'\left( { - 1} \right)\left( {x + 1} \right) + 3\]
Ta có: \[y'\left( { - 1} \right) = - 3\], khi đó phương trình \[\left( t \right)\] là: \[y = - 3x + 6\]
b) Thay \[x = 2\] vào đồ thị của (C) ta được \[y = 21\].
phương trình \[\left( t \right)\] là: \[y = 24x - 27\]
c) Thay \[y = 1\] vào đồ thị của (C) ta được \[{x^2}\left( {x + 3} \right) = 0 \Leftrightarrow x = 0\] hoặc \[x = - 3\].
phương trình \[\left( t \right)\] là: \[y = 1\], \[y = 9x + 28\]
d) Trục tung Oy : \[x = 0 \Rightarrow y = 1\]. phương trình \[\left( t \right)\] là: \[y = 1\]
Câu 2
A. \(a\sqrt 2 \).
Lời giải
Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).
Câu 3
a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).
b) \({\log _{ab}}c > 0\).
c) \({\log _a}\frac{b}{c} > 0\).
d) \({\log _b}\frac{a}{c} < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( { - 1;6} \right)\) .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(AN \bot BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[y + 16 = - 9\left( {x + 3} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

