Câu hỏi:

16/12/2025 10 Lưu

Một chất điểm chuyển động thẳng xác định bởi phương trình \(S = f\left( t \right) = {t^3} - 3{t^2} + 4t\), trong đó \(t\) được tính bằng giây (s) và \(S\) được tính bằng mét (m). Gia tốc của chất điểm tại thời điểm \(t = 2\) (s) có giá trị là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\)

Lời giải

Ta có \(v = f'\left( t \right) = 3{t^2} - 6t + 4\) và \(a = f''\left( t \right) = 6t - 6\).

Gia tốc của chất điểm tại thời điểm \(t = 2\) (s) có giá trị là \(f''\left( 2 \right) = 6.2 - 6 = 6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Phương trình tiếp tuyến của (C) tại điểm \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] là: \[y =  - 3x + 6\]   

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng 2 là \[y = 24x - 27\]

Đúng
Sai

c) Có 2 phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1 

Đúng
Sai

d) Có 2 phương trình tiếp tuyến của (C) tại giao điểm (C) với trục tung 

Đúng
Sai

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

Hàm số đã cho xác định \[D = \mathbb{R}\]

Ta có: \[y' = 3{x^2} + 6x\]

a) Phương trình tiếp tuyến \[\left( t \right)\]tại \[{\rm{M}}\left( { - {\rm{1}};{\rm{3}}} \right)\] có phương trình : \[y = y'\left( { - 1} \right)\left( {x + 1} \right) + 3\]

Ta có: \[y'\left( { - 1} \right) =  - 3\], khi đó phương trình \[\left( t \right)\] là: \[y =  - 3x + 6\]

b) Thay \[x = 2\] vào đồ thị của (C) ta được \[y = 21\].

phương trình \[\left( t \right)\] là: \[y = 24x - 27\]

c) Thay \[y = 1\] vào đồ thị của (C) ta được \[{x^2}\left( {x + 3} \right) = 0 \Leftrightarrow x = 0\] hoặc \[x =  - 3\].

phương trình \[\left( t \right)\] là: \[y = 1\], \[y = 9x + 28\]

d) Trục tung Oy : \[x = 0 \Rightarrow y = 1\]. phương trình \[\left( t \right)\] là: \[y = 1\]

Lời giải

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

Câu 3

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).   

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\).

Đúng
Sai

d) \({\log _b}\frac{a}{c} < 0\).

Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( { - 1;6} \right)\) .   

B. \(\left( {\frac{5}{2};6} \right)\). 
C. \(\left( { - \infty ;6} \right)\). 
D. \(\left( {6; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y + 16 =  - 9\left( {x + 3} \right)\]. 

B. \[y - 16 =  - 9\left( {x - 3} \right)\].  
C. \[y =  - 9\left( {x + 3} \right)\].   
D. \[y - 16 =  - 9\left( {x + 3} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP