Tìm phương trình chính tắc của Elip có tiêu cự bằng \[4\]và đi qua điểm \[A\left( {0;6} \right)\].
Quảng cáo
Trả lời:
Phương trình chính tắc của elip có dạng \[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1{\rm{ }}\left( {a,b > 0} \right)\].
Theo giả thiết:\(2c = 4 \Leftrightarrow c = 2\). Vì \[A\left( {0;6} \right) \in \left( E \right)\]nên ta có phương trình: \[\frac{{{0^2}}}{{{a^2}}} + \frac{{{6^2}}}{{{b^2}}} = 1\, \Leftrightarrow b = 6\].
Khi đó: \({a^2} = {b^2} + {c^2} \Leftrightarrow {a^2} = {6^2} + {2^2}\)\( \Leftrightarrow {a^2} = 40 \Leftrightarrow a = \sqrt {40} \).
Vậy phương trình chính tắc của Elip là: \[\frac{{{x^2}}}{{40}} + \frac{{{y^2}}}{{36}} = 1\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).
Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).
Vậy độ dài gần đúng của cây cầu là \[500m\].
Câu 2
Lời giải
Sai số tương đối \[{\delta _a} \le \frac{{0,2}}{{152}} = 0,001315789 \approx 0,1316\% \].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
