Một tổ có 7 học sinh nữ, 5 học sinh nam. Chọn ngẫu nhiên 2 bạn đi trực nhật. Xác suất để 2 bạn được chọn đều là nữ là
Một tổ có 7 học sinh nữ, 5 học sinh nam. Chọn ngẫu nhiên 2 bạn đi trực nhật. Xác suất để 2 bạn được chọn đều là nữ là
Quảng cáo
Trả lời:
Chọn \(2\)trong \(12\) bạn làm trực nhật, số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{12}^2 = 66\)
Gọi \(A\) là biến cố ‘\(2\) bạn được chọn đều là nữ’. Ta có: \(n\left( A \right) = C_7^2 = 21\).
Suy ra xác suất để 2 bạn được chọn đều là nữ là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{7}{{22}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).
Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).
Vậy độ dài gần đúng của cây cầu là \[500m\].
Lời giải

Ta có: \(AH \bot d \Rightarrow \) phương trình đường thẳng \(AH:x - y = 0\).
Gọi \(H,\,D\) lần lượt là trung điểm của \(BC,\,AH\).
Toạ độ \(D\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2\). Vậy \(D\left( {2;\,2} \right) \Rightarrow H\left( { - 2; - 2} \right)\).
Do \(BC//d \Rightarrow BC\) có phương trình: \(x + y + 4 = 0\).
\(C \in BC \Rightarrow C\left( {t;\, - t - 4} \right)\) với \(t > 0\). Do \(H\) là trung điểm \(BC\) nên suy ra \(B\left( { - t - 4;\,t} \right)\).
Ta có \(\overrightarrow {AB} .\overrightarrow {CE} = 0 \Leftrightarrow {t^2} + 2t - 8 = 0 \Rightarrow t = 2\) (do \(t > 0\)).
Vậy \(C\left( {2;\, - 6} \right)\) nên \(x_C^2 + y_C^2 = {2^2} + {\left( { - 6} \right)^2} = 40\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.