Câu hỏi:

17/12/2025 6 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Gieo một con xúc sắc 6 mặt cân đối và đồng chất hai lần. Xét tính đúng sai của các mệnh đề sau:

a) Có 6 cách để hai lần gieo đều ra số chấm giống nhau.
Đúng
Sai
b) Có 6 cách để gieo được lần đầu ra mặt 6 chấm.
Đúng
Sai
c) Có 12 cách để trong hai lần gieo xuất hiện đúng một lần mặt 1 chấm.
Đúng
Sai
d) Có 33 cách để sau hai lần gieo được tổng số chấm không bé hơn 4.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Số cách gieo lần một là 6 cách, số cách gieo lần hai là 1 cách. Suy ra số cách để sau hai lần gieo đều ra số chấm giống nhau là \(6.1 = 6\) cách.

b) Đúng: Số cách gieo lần một xuất hiện mặt 6 chấm là 1 cách, lần gieo thứ hai có 6 cách. Suy ra số cách gieo để gieo được lần đầu ra mặt 6 chấm là \(6.1 = 6\) cách.

c) Sai: Số cách gieo lần một được mặt 1 chấm là 1 cách, lần hai được mặt có số chấm khác 1 là 5 cách.

Số cách gieo lần một được mặt có số chấm khác 1 là 5 cách, lần hai được mặt 1 chấm là 1 cách.

Vậy số cách để hai lần gieo xuất hiện đúng một lần mặt 1 chấm là \(1.5 + 5.1 = 10\) cách.

d) Đúng: Số cách gieo hai lần là \(6.6 = 36\) cách.

Trường hợp 1: Số cách gieo hai lần đều được mặt 1 chấm là 1 cách.

Trường hợp 2: Số cách gieo hai lần được tổng số chấm bằng 3 là: 2 cách, gồm \(\left( {1;2} \right),\left( {2;1} \right)\).

Vậy số cách để sau hai lần gieo được tổng số chấm nhỏ hơn 4 là \(2 + 1 = 3\) cách.

Số cách gieo để sau hai lần gieo được tổng số chấm không bé hơn 4 là \(36 - 3 = 33\) cách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).

Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).

Vậy độ dài gần đúng của cây cầu là \[500m\].

Lời giải

Trong mặt phẳng toạ độ \(Oxy\), cho tam giác \(AB (ảnh 1)

Ta có: \(AH \bot d \Rightarrow \) phương trình đường thẳng \(AH:x - y = 0\).

Gọi \(H,\,D\) lần lượt là trung điểm của \(BC,\,AH\).

Toạ độ \(D\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2\). Vậy \(D\left( {2;\,2} \right) \Rightarrow H\left( { - 2; - 2} \right)\).

Do \(BC//d \Rightarrow BC\) có phương trình: \(x + y + 4 = 0\).

\(C \in BC \Rightarrow C\left( {t;\, - t - 4} \right)\) với \(t > 0\). Do \(H\) là trung điểm \(BC\) nên suy ra \(B\left( { - t - 4;\,t} \right)\).

Ta có \(\overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow {t^2} + 2t - 8 = 0 \Rightarrow t = 2\) (do \(t > 0\)).

Vậy \(C\left( {2;\, - 6} \right)\) nên \(x_C^2 + y_C^2 = {2^2} + {\left( { - 6} \right)^2} = 40\).

Câu 4

A. \(16\).                    
B. \(11\).                  
C. \(15\).                         
D. \(12\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 7.257.600 cách.    
B. 958.003.200 cách.                          
C. 479.001.600 cách.                          
D. 79.833.600 cách.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Đối với phép đo thửa đất, sai số tương đối không vượt quá \(0,663{\rm{\% }}\).
Đúng
Sai
b) Đối với phép đo thửa đất, có sai số tương đối: \(\frac{d}{{\left| a \right|}} = \frac{{0,5}}{{75,4}} = \frac{5}{{754}}\).
Đúng
Sai
c) Đối với phép đo chiều dài cây cầu, có sai số tương đối lớn hơn \(\frac{5}{{4662}} \approx 0,107{\rm{\% }}\).
Đúng
Sai
d) Phép đo cây cầu có độ chính xác cao hơn phép đo chiều dài của một thửa đất.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP