PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Gieo một con xúc sắc 6 mặt cân đối và đồng chất hai lần. Xét tính đúng sai của các mệnh đề sau:
Quảng cáo
Trả lời:
a) Đúng: Số cách gieo lần một là 6 cách, số cách gieo lần hai là 1 cách. Suy ra số cách để sau hai lần gieo đều ra số chấm giống nhau là \(6.1 = 6\) cách.
b) Đúng: Số cách gieo lần một xuất hiện mặt 6 chấm là 1 cách, lần gieo thứ hai có 6 cách. Suy ra số cách gieo để gieo được lần đầu ra mặt 6 chấm là \(6.1 = 6\) cách.
c) Sai: Số cách gieo lần một được mặt 1 chấm là 1 cách, lần hai được mặt có số chấm khác 1 là 5 cách.
Số cách gieo lần một được mặt có số chấm khác 1 là 5 cách, lần hai được mặt 1 chấm là 1 cách.
Vậy số cách để hai lần gieo xuất hiện đúng một lần mặt 1 chấm là \(1.5 + 5.1 = 10\) cách.
d) Đúng: Số cách gieo hai lần là \(6.6 = 36\) cách.
Trường hợp 1: Số cách gieo hai lần đều được mặt 1 chấm là 1 cách.
Trường hợp 2: Số cách gieo hai lần được tổng số chấm bằng 3 là: 2 cách, gồm \(\left( {1;2} \right),\left( {2;1} \right)\).
Vậy số cách để sau hai lần gieo được tổng số chấm nhỏ hơn 4 là \(2 + 1 = 3\) cách.
Số cách gieo để sau hai lần gieo được tổng số chấm không bé hơn 4 là \(36 - 3 = 33\) cách.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).
Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).
Vậy độ dài gần đúng của cây cầu là \[500m\].
Lời giải

Ta có: \(AH \bot d \Rightarrow \) phương trình đường thẳng \(AH:x - y = 0\).
Gọi \(H,\,D\) lần lượt là trung điểm của \(BC,\,AH\).
Toạ độ \(D\) là nghiệm của hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow x = y = 2\). Vậy \(D\left( {2;\,2} \right) \Rightarrow H\left( { - 2; - 2} \right)\).
Do \(BC//d \Rightarrow BC\) có phương trình: \(x + y + 4 = 0\).
\(C \in BC \Rightarrow C\left( {t;\, - t - 4} \right)\) với \(t > 0\). Do \(H\) là trung điểm \(BC\) nên suy ra \(B\left( { - t - 4;\,t} \right)\).
Ta có \(\overrightarrow {AB} .\overrightarrow {CE} = 0 \Leftrightarrow {t^2} + 2t - 8 = 0 \Rightarrow t = 2\) (do \(t > 0\)).
Vậy \(C\left( {2;\, - 6} \right)\) nên \(x_C^2 + y_C^2 = {2^2} + {\left( { - 6} \right)^2} = 40\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.