Câu hỏi:

17/12/2025 66 Lưu

Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) cân tại \(A\) có đỉnh \(A\left( {6;\,\,6} \right)\); đường thẳng \(d\) đi qua trung điểm của các cạnh \(AB\)\(AC\) có phương trình \(x + y - 4 = 0\) và điểm \(E\left( {1;\,\, - 3} \right)\) nằm trên đường cao đi qua đỉnh \(C\) của tam giác đã cho. Xét tính đúng sai của các mệnh đề sau:

a) Trung điểm của cạnh \(BC\) có tọa độ là \(\left( { - 2;\,1} \right)\).
Đúng
Sai
b) Phương trình đường thẳng \(BC\) là: \(x + y + 4 = 0\)
Đúng
Sai
c) Có hai điểm \(B\) thỏa mãn bài toán.
Đúng
Sai
d) Chỉ có một điểm \(C\) duy nhất thỏa mãn bài toán.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Đối với phép đo thửa đất, tỉ (ảnh 1)

Từ \(A\) kẻ đường cao \(AH\) \((H \in BC)\) cắt \(d\) tại \(I\).

Vì tam giác \(ABC\) cân tại \(A\) nên \(H,\,\,I\) lần lượt là trung điểm của \(BC\) và \(AH.\)

Khi đó \(AH\) đi qua \(A\left( {6;\,\,6} \right)\) vuông góc với \(d\) nên có phương trình: \(x - y = 0\). Suy ra tọa độ điểm \(I\) thỏa mãn hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\) \( \Rightarrow I\left( {2;\,\,2} \right) \Rightarrow H\left( { - 2;\,\, - 2} \right)\).

Đường thẳng \(BC\) đi qua \(H\) và song song với \(d\) nên có phương trình \(x + y + 4 = 0\).

Gọi \(B\left( {t;\,\, - t - 4} \right) \in BC\) \( \Rightarrow C\left( { - 4 - t;\,\,t} \right)\) ( do \(H\) là trung điểm \(BC\))\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB}  = \left( {t - 6;\,\, - 10 - t} \right)\\\overrightarrow {CE}  = \left( {t + 5;\,\, - 3 - t} \right)\end{array} \right.\)

Do \(E\left( {1;\,\, - 3} \right)\) nằm trên đường cao đi qua \(C\) của tam giác \(ABC\), suy ra:

\(\overrightarrow {AB} .\overrightarrow {CE}  = 0 \Leftrightarrow \left( {t - 6} \right)\left( {t + 5} \right) + \left( { - 10 - t} \right)\left( { - 3 - t} \right) = 0\)

\( \Leftrightarrow {t^2} + 6t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t =  - 6\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}B\left( {0;\,\, - 4} \right)\\C\left( { - 4;\,\,0} \right)\end{array} \right.\\\left\{ \begin{array}{l}B\left( { - 6;\,\,2} \right)\\C\left( {2;\,\, - 6} \right)\end{array} \right.\end{array} \right.\)

Vậy \(B\left( {0;\,\, - 4} \right),\,\,C\left( { - 4;\,\,0} \right)\) hoặc \(B\left( { - 6;\,\,2} \right),\,\,C\left( {2;\,\, - 6} \right)\).

a) Sai: Trung điểm của cạnh \(BC\) có tọa độ là \(\left( { - 2;\, - 2} \right)\).

b) Đúng: Phương trình đường thẳng \(BC\) là: \(x + y + 4 = 0\)

c) Đúng: Có hai điểm \(B\) thỏa mãn bài toán là \(B\left( {0;\,\, - 4} \right)\) hoặc \(B\left( { - 6;\,\,2} \right)\)

d) Sai: Có hai điểm \(C\) duy nhất thỏa mãn bài toán là \(C\left( { - 4;\,\,0} \right)\) hoặc \(\left( {2;\,\, - 6} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).

Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).

Vậy độ dài gần đúng của cây cầu là \[500m\].

Câu 2

A. \[\frac{{120}}{{341}}\].                        
B. \[\frac{{105}}{{341}}\].                             
C. \[\frac{{91}}{{5797}}\].                             
D. \[\frac{{21}}{{682}}\]

Lời giải

Số phần tử của không gian mẫu \[n\left( \Omega  \right) = C_{34}^5\]

Gọi \[A\] là biến cố: "Chọn được 2 học sinh nam và 3 học sinh nữ".

Chọn 2 học sinh nam trong số 16 học sinh nam thì có \[C_{16}^2\]cách chọn.

Chọn 3 học sinh nữ trong số 18 học sinh nữ thì có \[C_{18}^3\]cách chọn.

Áp dụng quy tắc nhân, sẽ có \[C_{16}^2.C_{18}^3\]cách chọn 2 học sinh nam và 3 học sinh nữ.

Vậy xác suất cần tìm \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^2.C_{18}^3}}{{C_{34}^5}} = \frac{{120}}{{341}}\].

Câu 3

a) Có 6 cách để hai lần gieo đều ra số chấm giống nhau.
Đúng
Sai
b) Có 6 cách để gieo được lần đầu ra mặt 6 chấm.
Đúng
Sai
c) Có 12 cách để trong hai lần gieo xuất hiện đúng một lần mặt 1 chấm.
Đúng
Sai
d) Có 33 cách để sau hai lần gieo được tổng số chấm không bé hơn 4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\delta _a} < 0,1316\% \).                                                               
B. \({\delta _a} < 1,316\% \).
C. \({\delta _a} = 0,1316\% \).                                                               
D. \({\delta _a} > 0,1316\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[256\].                  
B. \[120\].                
C. \[24\].                         
D. \[16\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP