Trong mặt phẳng tọa độ \(Oxy\), cho tam giác \(ABC\) cân tại \(A\) có đỉnh \(A\left( {6;\,\,6} \right)\); đường thẳng \(d\) đi qua trung điểm của các cạnh \(AB\) và \(AC\) có phương trình \(x + y - 4 = 0\) và điểm \(E\left( {1;\,\, - 3} \right)\) nằm trên đường cao đi qua đỉnh \(C\) của tam giác đã cho. Xét tính đúng sai của các mệnh đề sau:
Quảng cáo
Trả lời:

Từ \(A\) kẻ đường cao \(AH\) \((H \in BC)\) cắt \(d\) tại \(I\).
Vì tam giác \(ABC\) cân tại \(A\) nên \(H,\,\,I\) lần lượt là trung điểm của \(BC\) và \(AH.\)
Khi đó \(AH\) đi qua \(A\left( {6;\,\,6} \right)\) vuông góc với \(d\) nên có phương trình: \(x - y = 0\). Suy ra tọa độ điểm \(I\) thỏa mãn hệ: \(\left\{ \begin{array}{l}x + y - 4 = 0\\x - y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\) \( \Rightarrow I\left( {2;\,\,2} \right) \Rightarrow H\left( { - 2;\,\, - 2} \right)\).
Đường thẳng \(BC\) đi qua \(H\) và song song với \(d\) nên có phương trình \(x + y + 4 = 0\).
Gọi \(B\left( {t;\,\, - t - 4} \right) \in BC\) \( \Rightarrow C\left( { - 4 - t;\,\,t} \right)\) ( do \(H\) là trung điểm \(BC\))\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AB} = \left( {t - 6;\,\, - 10 - t} \right)\\\overrightarrow {CE} = \left( {t + 5;\,\, - 3 - t} \right)\end{array} \right.\)
Do \(E\left( {1;\,\, - 3} \right)\) nằm trên đường cao đi qua \(C\) của tam giác \(ABC\), suy ra:
\(\overrightarrow {AB} .\overrightarrow {CE} = 0 \Leftrightarrow \left( {t - 6} \right)\left( {t + 5} \right) + \left( { - 10 - t} \right)\left( { - 3 - t} \right) = 0\)
\( \Leftrightarrow {t^2} + 6t = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = - 6\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}B\left( {0;\,\, - 4} \right)\\C\left( { - 4;\,\,0} \right)\end{array} \right.\\\left\{ \begin{array}{l}B\left( { - 6;\,\,2} \right)\\C\left( {2;\,\, - 6} \right)\end{array} \right.\end{array} \right.\)
Vậy \(B\left( {0;\,\, - 4} \right),\,\,C\left( { - 4;\,\,0} \right)\) hoặc \(B\left( { - 6;\,\,2} \right),\,\,C\left( {2;\,\, - 6} \right)\).
a) Sai: Trung điểm của cạnh \(BC\) có tọa độ là \(\left( { - 2;\, - 2} \right)\).
b) Đúng: Phương trình đường thẳng \(BC\) là: \(x + y + 4 = 0\)
c) Đúng: Có hai điểm \(B\) thỏa mãn bài toán là \(B\left( {0;\,\, - 4} \right)\) hoặc \(B\left( { - 6;\,\,2} \right)\)
d) Sai: Có hai điểm \(C\) duy nhất thỏa mãn bài toán là \(C\left( { - 4;\,\,0} \right)\) hoặc \(\left( {2;\,\, - 6} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).
Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).
Vậy độ dài gần đúng của cây cầu là \[500m\].
Câu 2
Lời giải
Số phần tử của không gian mẫu \[n\left( \Omega \right) = C_{34}^5\]
Gọi \[A\] là biến cố: "Chọn được 2 học sinh nam và 3 học sinh nữ".
Chọn 2 học sinh nam trong số 16 học sinh nam thì có \[C_{16}^2\]cách chọn.
Chọn 3 học sinh nữ trong số 18 học sinh nữ thì có \[C_{18}^3\]cách chọn.
Áp dụng quy tắc nhân, sẽ có \[C_{16}^2.C_{18}^3\]cách chọn 2 học sinh nam và 3 học sinh nữ.
Vậy xác suất cần tìm \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{C_{16}^2.C_{18}^3}}{{C_{34}^5}} = \frac{{120}}{{341}}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.