Câu hỏi:

17/12/2025 63 Lưu

Có 100 tấm thẻ được đánh số từ 1 đến 100. Lấy ngẫu nhiên 5 thẻ. Xét tính đúng sai của các mệnh đề sau:

a) Số phần tử của không gian mẫu là \(C_{100}^5.\)
Đúng
Sai
b) Xác suất để 5 thẻ lấy ra đều mang số chẵn là \(\frac{1}{2}\).
Đúng
Sai
c) Xác suất để 5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ xấp xỉ bằng \(0,32\).
Đúng
Sai
d) Xác suất để có ít nhất một số ghi trên thẻ được chọn chia hết cho 3 xấp xỉ bằng \(0,78\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng: Số phần tử của không gian mẫu \(n\left( \Omega  \right) = C_{100}^5.\)

b) Sai: Từ 1 đến 100 có 50 số chẵn, suy ra số cách chọn 5 thẻ đều mang số chẵn là \(n\left( A \right) = C_{50}^5.\)

Vậy xác suất để 5 thẻ lấy ra đều mang số chẵn là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{50}^5}}{{C_{100}^5}} \approx 0,028\)

c) Đúng: Gọi B là biến cố: “5 thẻ lấy ra có 2 thẻ mang số chẵn và 3 thẻ mang số lẻ”.

Suy ra \(n\left( B \right) = C_{50}^2.C_{50}^3\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{50}^2.C_{50}^3}}{{C_{100}^5}} \approx 0,32\)

d) Đúng:Từ 1 đến 100 có 33 số chia hết cho 3, 67 số không chia hết cho 3.

Gọi C là biến cố: “Ít nhất một số ghi trên 5 thẻ được chọn chia hết cho 3”.

Ta có \(\overline C \): “Cả 5 số trên 5 thẻ được chọn đều không chia hết cho 3”.

Suy ra \(n\left( {\overline C } \right) = C_{67}^5\), do đó \(n\left( C \right) = C_{100}^5 - C_{67}^5\).

Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{100}^5 - C_{67}^5}}{{C_{100}^5}} \approx 0,87\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} \Rightarrow |a| = \frac{{{\Delta _a}}}{{{\delta _a}}}\).

Do \({\delta _a} \le 0,15\% ;d = 0,75\) nên \(|a| \ge \frac{{0,75}}{{0,15}}.100 = 500\).

Vậy độ dài gần đúng của cây cầu là \[500m\].

Câu 2

A. \[\frac{{120}}{{341}}\].                        
B. \[\frac{{105}}{{341}}\].                             
C. \[\frac{{91}}{{5797}}\].                             
D. \[\frac{{21}}{{682}}\]

Lời giải

Số phần tử của không gian mẫu \[n\left( \Omega  \right) = C_{34}^5\]

Gọi \[A\] là biến cố: "Chọn được 2 học sinh nam và 3 học sinh nữ".

Chọn 2 học sinh nam trong số 16 học sinh nam thì có \[C_{16}^2\]cách chọn.

Chọn 3 học sinh nữ trong số 18 học sinh nữ thì có \[C_{18}^3\]cách chọn.

Áp dụng quy tắc nhân, sẽ có \[C_{16}^2.C_{18}^3\]cách chọn 2 học sinh nam và 3 học sinh nữ.

Vậy xác suất cần tìm \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^2.C_{18}^3}}{{C_{34}^5}} = \frac{{120}}{{341}}\].

Câu 3

a) Có 6 cách để hai lần gieo đều ra số chấm giống nhau.
Đúng
Sai
b) Có 6 cách để gieo được lần đầu ra mặt 6 chấm.
Đúng
Sai
c) Có 12 cách để trong hai lần gieo xuất hiện đúng một lần mặt 1 chấm.
Đúng
Sai
d) Có 33 cách để sau hai lần gieo được tổng số chấm không bé hơn 4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\delta _a} < 0,1316\% \).                                                               
B. \({\delta _a} < 1,316\% \).
C. \({\delta _a} = 0,1316\% \).                                                               
D. \({\delta _a} > 0,1316\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[256\].                  
B. \[120\].                
C. \[24\].                         
D. \[16\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP