Câu hỏi:

17/12/2025 23 Lưu

Cho tứ diện \[ABCD\]có hai mặt phẳng \(\left( {ABC} \right)\), \(\left( {ABD} \right)\)cùng vuông góc với \(\left( {BCD} \right)\). Gọi \(BE,\;DF\) là hai đường cao của tam giác \(BCD\),\(DK\)là đường cao của tam giác \(ACD\). Chọn khẳng định sai trong các khẳng định sau?

A. \(\left( {ABE} \right) \bot \left( {ACD} \right)\).            

B. \(\left( {ABD} \right) \bot \left( {ACD} \right)\).
C. \(\left( {ABC} \right) \bot \left( {DFK} \right)\).     
D. \(\left( {DFK} \right) \bot \left( {ACD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Cho tứ diện ABCD có hai mặt phẳng (ABC), (ABD) cùng vuông góc với (BCD). Gọi BE,DF là hai đường cao của tam giác BCD,DK là đường cao của tam giác ACD. Chọn khẳng định sai trong các khẳng định sau? (ảnh 1)

\(\left. \begin{array}{l}CD \bot AB\\CD \bot BE\end{array} \right\} \Rightarrow CD \bot \left( {ABE} \right) \Rightarrow \left( {ACD} \right) \bot \left( {ABE} \right)\)nên A đúng.

\(\left. \begin{array}{l}DF \bot AB\\DF \bot BC\end{array} \right\} \Rightarrow DF \bot \left( {ABC} \right) \Rightarrow DF \bot AC.\quad AC \bot DF,AC \bot DK \Rightarrow AC \bot \left( {DKF} \right)\)

Nên C,D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {62,7^0}\)

Lời giải

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a,SA vuông góc (ABC) và SA = 2a. Tính góc phẳng nhị diện [A,SC,B]? (ảnh 1)

Kẻ \(BI \bot AC\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BI \bot AC}\\{BI \bot SA}\end{array} \Rightarrow BI \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SAC) \cap (SBC) = SC}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),IH \bot SC \Rightarrow [A,SC,B] = \widehat {IHB}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),BH \bot SC}\end{array}} \right.\)

Ta có:

ΔHCIΔACSHISA=CISCHI=SACISC=2aa2(2a)2+a2=55a

Xét \(\Delta BH\) vuông tại \(I:\tan \widehat {BHI} = \frac{{BI}}{{HI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt 5 }}{5}a}} = \frac{{\sqrt {15} }}{2} \Rightarrow \widehat {BHI} \approx {62,7^0}\)

Câu 2

a) \[{y^2} + {\left( {y'} \right)^2} = 4\]. 

Đúng
Sai

b) \(4y + y'' = 0\).

Đúng
Sai

c) \[4y - y'' = 0\]. 

Đúng
Sai

d) \[y = y'\tan 2x\].

Đúng
Sai

Lời giải

a) Sai

b) Đúng

c) Sai

d) Sai

\(y' = 2\cos 2x\), \(y'' =  - 4\sin 2x\).

\[{y^2} + {\left( {y'} \right)^2} = {\sin ^2}2x + 4{\cos ^2}2x = 1 + 3{\cos ^2}2x\].

\(4y + y'' = 4\sin 2x - 4\sin 2x = 0\).

\(4y - y'' = 8\sin 2x\).

\(y'\tan 2x = 2\cos 2x.\frac{{\sin 2x}}{{\cos 2x}} = 2\sin 2x\).

Câu 5

A. \(S = \left( {\frac{3}{4};3} \right]\). 

B. \(S = \left( {\frac{3}{4}; + \infty } \right)\). 

C. \(S = \left[ {3; + \infty } \right)\).
D. \(x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP