Cho tứ diện \(S.ABC\) trong đó \(SA,SB,SC\) vuông góc với nhau từng đôi một và \(SA = 3a,SB = a,SC = 2a\). Tính khoảng cách từ \(A\) đến đường thẳng \(BC\).
Quảng cáo
Trả lời:
Đáp án:
Trả lời: \(d(A,BC) = \frac{{7\sqrt 5 }}{5}a\)
Lời giải
Kẻ \(AH \bot BC\) tại \(H \Rightarrow d(A,BC) = AH\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AH}\end{array} \Rightarrow BC \bot (SAH) \Rightarrow BC \bot SH} \right.\)
Ta có: \(SH = \frac{1}{{\sqrt {\frac{1}{{S{C^2}}} + \frac{1}{{S{B^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{(2a)}^2}}} + \frac{1}{{{a^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)
Ta có: \(AH = \sqrt {S{A^2} + S{H^2}} = \sqrt {{{(3a)}^2} + {{\left( {\frac{{2\sqrt 5 }}{5}a} \right)}^2}} = \frac{{7\sqrt 5 }}{5}a\)
Vậy \(d(A,BC) = \frac{{7\sqrt 5 }}{5}a\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(10,6465\) giờ.
Lời giải
\(P\left( t \right) = \frac{{1500000}}{{1 + 5000{e^{ - 0,8t}}}} \Rightarrow P'\left( t \right) = \frac{{6000000000.{e^{ - 0,8t}}}}{{{{\left( {1 + 5000{e^{ - 0,8t}}} \right)}^2}}} \le \frac{{6000000000.{e^{ - 0,8t}}}}{{4.1.5000{e^{ - 0,8t}}}} = 300000\).
Dấu bằng xảy ra khi và chỉ khi \(1 = 5000{e^{ - 0,8t}} \Leftrightarrow t \approx 10,6465\) giờ.
Câu 2
a) \({\left( {a - 10} \right)^2} = 1\).
b) \(a\) cũng là nghiệm của phương trình \({\left( {\frac{2}{3}} \right)^{\log x}} = \frac{9}{4}\).
c) \({a^2} + a + 1 = 2\).
d) \(a = {10^2}\).
Lời giải
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Điều kiện \(x > 0\).
Chia cả hai vế của phương trình cho \({3^{2\log x}}\) ta được \(4{\left( {\frac{3}{2}} \right)^{2\log x}} - {\left( {\frac{3}{2}} \right)^{\log x}} - 18 = 0\).
Đặt \(t = {\left( {\frac{3}{2}} \right)^{\log x}}\), \(t > 0\).
Ta có \(4{t^2} - t - 18 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = \frac{9}{4}\\t = - 2\left( L \right)\end{array} \right.\).
Với \(t = \frac{9}{4}\) \( \Rightarrow {\left( {\frac{3}{2}} \right)^{\log x}} = \frac{9}{4}\) \( \Leftrightarrow \log x = 2\) \( \Leftrightarrow x = 100\).
Vậy \(a = 100 = {10^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[P = {\log _2}\left( {2a{b^2}} \right)\].
B. \[P = {\log _2}{\left( {ab} \right)^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
