Câu hỏi:

18/12/2025 4 Lưu

Trong mặt phẳng tọa độ \[Oxy\], cho điểm \(I\left( {2;0} \right)\) và đường thẳng \(\left( d \right):x - y + 2 = 0\). Đường tròn tâm \(I\) và tiếp xúc với đường thẳng \(\left( d \right)\)có phương trình là:

A. \({\left( {x - 2} \right)^2} + {y^2} = 8\)                                                               
B. \({\left( {x - 2} \right)^2} + {y^2} = 2\sqrt 2 \).
C. \({(x - 2)^2} + {y^2} = 2\)                                                               
D. \({\left( {x - 2} \right)^2} + {y^2} = 4\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì đường tròn tiếp xúc với đường thẳng \(\left( d \right)\) nên \(R = d\left( {I;\left( d \right)} \right) = \frac{{\left| {2 - 0 + 2} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} }} = 2\sqrt 2 \).

Vậy phương trình đường tròn cần tìm là \({\left( {x - 2} \right)^2} + {\left( {y - 0} \right)^2} = {\left( {2\sqrt 2 } \right)^2} \Leftrightarrow {\left( {x - 2} \right)^2} + {y^2} = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tự nhiên có \(4\) chữ số đôi một khác nhau là \(\overline {abcd} ;a \ne 0\).

Trường hợp 1: Số được lập có \(4\) chữ số chẵn, có \(4! = 24\) (số).

Trường hợp 2: Số được lập có \(1\) chữ số lẻ và \(3\) chữ số chẵn:

Chọn 1 số lẻ có 5 cách

Chọn vị trí cho số lẻ có 4 cách

Chọn 3 số chẵn từ 4 số chẵn và xếp vào 3 vị trí có: \(A_4^3\) cách

Suy ra, có \(5.4.A_4^3 = 480\) (số).

Trường hợp 3: Số được lập có 2 chữ số lẻ và \(2\) chữ số chẵn,

Chọn vị trí cho hai số lẻ có 3 cách (hai số lẻ xếp vào các vị trí: ac;bd;ad)

Chọn 2 số lẻ từ 5 số lẻ và xếp vào 2 vị trí có: \(A_5^2\) cách

Chọn 2 số chẵn từ 4 số chẵn và xếp vào 2 vị trí còn lại có: \(A_4^2\) cách

Suy ra, có \(3.A_5^2.A_4^2 = 720\) (số).

Do đó, số các số tự nhiên có \(4\) chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng lẻ là: \(24 + 480 + 720 = 1224\).

Lời giải

Tổng số học sinh là \(40\) học sinh nên dãy số liệu trên khi sắp xếp theo thứ tự không giảm là: \(3\); \(3\); \(4\); \(4\); \(4\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(5\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(6\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(7\); \(8\); \(8\); \(8\); \(8\); \(8\); \(8\); \(9\); \(9\); \(9\); \(9\); \(10\).

Vị trí thứ \(20\) là \(6\) và vị trí thứ \(21\) trong dãy số liệu là \(7\) nên trung vị là \[\frac{{6 + 7}}{2} = 6,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{5} = 1\].                              
B. \[\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{20}} = 1\].                             
C. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{5} = 1\].                              
D. \[\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{20}} = 1\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP