Một cửa hàng bún đậu vừa khai trương, thống kê lượng khách tới quán trong 7 ngày đầu và thu được mẫu số liệu sau:

Xét tính đúng sai trong các khẳng định sau:

Xét tính đúng sai trong các khẳng định sau:
Quảng cáo
Trả lời:
a) Đúng: Số trung bình là \(\overline x = \frac{{575 + 454 + 400 + 325 + 351 + 333 + 412}}{7} \approx 407,142857\)
b) Sai: Sắp xếp số liệu theo thứ tự không giảm \(325\,\,\,333\,\,\,351\,\,\,400\,\,\,412\;\;454\;\;575\). Trung vị của mẫu số liệu là \({M_e} = 400\)
c) Sai: Ngày 1 không là mốt nên mệnh đề sai.
d) Sai: Nếu ngày 6 có 400 lượt khách thì mốt là 400 mà không phải là ngày 3
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đúng: Theo qui tắc nhân có \[5.5 = 25\] số có hai chữ số.
b) Sai: Gọi số có 3 chữ số khác nhau là \(\overline {abc} \).
Chọn \(a\) có 5 cách.
Chọn \(b\) có 4 cách.
Chọn \(c\) có 3 cách.
Suy ra có \[5.4.3 = 60\] số có ba chữ số khác nhau.
c) Đúng: Gọi số chẵn có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 2 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[2.4.3 = 24\] số chẵn có ba chữ số khác nhau.
d) Sai: Gọi số lẻ có ba chữ số khác nhau là \(\overline {abc} \).
Chọn \(c\) có 3 cách.
Chọn \(a\) có 4 cách.
Chọn \(b\) có 3 cách.
Suy ra có \[3.4.3 = 36\] số lẻ có ba chữ số khác nhau.
Lời giải
Trường hợp 1: Lấy \(1\) quả màu vàng và \(2\) quả màu đỏ có: \(C_8^2 = 28\) cách.
Trường hợp 2: Lấy \(1\) quả màu vàng và \(2\) quả màu xanh có: \(C_3^2 = 3\) cách.
Trường hợp 3: Lấy \(1\) quả màu đỏ và \(2\) quả màu xanh có: \(C_8^1.C_3^2 = 24\) cách.
Trường hợp 4: Lấy \(1\) quả màu xanh và \(2\) quả màu đỏ có: \(C_3^1.C_8^2 = 84\) cách.
Số cách để lấy được \(3\) quả cầu có đúng hai màu là: \(28 + 3 + 24 + 84 = 139\) cách.
Cách khác:
Số cách lấy \(3\) quả bất kì: \(C_{12}^3 = 220\).
Số cách lấy \(3\) quả có đủ \(3\) màu: \(C_8^1.C_3^1.C_1^1 = 24\).
Số cách lấy \(3\) quả chỉ có \(1\) màu: \(C_8^3 + C_3^3 = 57\).
Vậy số cách lấy thỏa mãn yêu cầu bài toán là \(220 - 24 - 57 = 139\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
