Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Gọi \[A\] là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”
Gọi \[B\] là biến cố “ Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì \[P\left( {B|A} \right) = \frac{1}{6}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
a) Đ, b) S, c) Đ, d) S
a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).
b) Thay tọa độ điểm \(A\left( {5; - 3; - 31} \right)\) vào phương trình đường thẳng \(d\) ta được \(\frac{{5 - 11}}{2} = \frac{{ - 3}}{1} = \frac{{ - 31 + 25}}{{ - 2}}\) (sai).
Do đó đường thẳng \(d\) không đi qua điểm \(A\left( {5; - 3; - 31} \right)\).
c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \overrightarrow u = \left( {2;1; - 2} \right)\) có phương trình là \(2\left( {x - 2} \right) + \left( {y - 3} \right) - 2\left( {z + 1} \right) = 0\) hay \(2x + y - 2z - 9 = 0\).
d)

Gọi \(H\) là hình chiếu của \(I\) lên \(AB\). Suy ra \(HA = HB = 8\).
Tọa độ điểm \(H\) là giao điểm của đường thẳng \(\left( d \right)\) và mặt phẳng \(\left( P \right)\).
Xét hệ \(\left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2x + y - 2z - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2\left( {11 + 2t} \right) + t - 2\left( { - 25 - 2t} \right) - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 25\\y = 7\\z = - 39\\t = 7\end{array} \right.\).
Suy ra \(H\left( {25;7; - 39} \right)\).
Ta có \(IH = \sqrt {{{\left( {25 - 2} \right)}^2} + {{\left( {7 - 3} \right)}^2} + {{\left( { - 39 + 1} \right)}^2}} = 3\sqrt {221} \).
Do đó \(R = \sqrt {I{H^2} + H{B^2}} = \sqrt {1989 + 64} = \sqrt {2053} \).
Vậy \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 2053\).
Câu 2
Lời giải
a) S, b) S, c) S, d) Đ
Gọi A là biến cố: “Sản phẩm bị thất lạc là sản phẩm loại II”
B là biến cố: “Sản phẩm bị thất lạc là sản phẩm loại I”
C là biến cố “Lấy được sản phẩm loại I từ 19 sản phẩm còn lại”.
a) Xác suất sản phẩm bị thất lạc là sản phẩm loại II là \(P\left( A \right) = \frac{{17}}{{20}}\).
b) Ta có \(P\left( {C|A} \right) = \frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{3}{{19}}\).
c) Ta có \(P\left( {C|B} \right) = \frac{2}{{19}}\).
d) Ta có \(P\left( C \right) = P\left( A \right).P\left( {C|A} \right) + P\left( B \right).P\left( {C|B} \right) = \frac{{17}}{{20}}.\frac{3}{{19}} + \frac{3}{{20}}.\frac{2}{{19}} = \frac{3}{{20}} = 15\% \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
