Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right)\) có tâm \(I\left( {2;3; - 1} \right)\) cắt đường thẳng \(d:\frac{{x - 11}}{2} = \frac{y}{1} = \frac{{z + 25}}{{ - 2}}\) tại hai điểm \(A,B\) sao cho \(AB = 16\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) Đ, d) S
a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).
b) Thay tọa độ điểm \(A\left( {5; - 3; - 31} \right)\) vào phương trình đường thẳng \(d\) ta được \(\frac{{5 - 11}}{2} = \frac{{ - 3}}{1} = \frac{{ - 31 + 25}}{{ - 2}}\) (sai).
Do đó đường thẳng \(d\) không đi qua điểm \(A\left( {5; - 3; - 31} \right)\).
c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có một vectơ pháp tuyến \(\overrightarrow n = \overrightarrow u = \left( {2;1; - 2} \right)\) có phương trình là \(2\left( {x - 2} \right) + \left( {y - 3} \right) - 2\left( {z + 1} \right) = 0\) hay \(2x + y - 2z - 9 = 0\).
d)

Gọi \(H\) là hình chiếu của \(I\) lên \(AB\). Suy ra \(HA = HB = 8\).
Tọa độ điểm \(H\) là giao điểm của đường thẳng \(\left( d \right)\) và mặt phẳng \(\left( P \right)\).
Xét hệ \(\left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2x + y - 2z - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 11 + 2t\\y = t\\z = - 25 - 2t\\2\left( {11 + 2t} \right) + t - 2\left( { - 25 - 2t} \right) - 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 25\\y = 7\\z = - 39\\t = 7\end{array} \right.\).
Suy ra \(H\left( {25;7; - 39} \right)\).
Ta có \(IH = \sqrt {{{\left( {25 - 2} \right)}^2} + {{\left( {7 - 3} \right)}^2} + {{\left( { - 39 + 1} \right)}^2}} = 3\sqrt {221} \).
Do đó \(R = \sqrt {I{H^2} + H{B^2}} = \sqrt {1989 + 64} = \sqrt {2053} \).
Vậy \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 2053\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có \(\overrightarrow {{u_d}} = \left( {1;2; - 1} \right),\overrightarrow {{n_\alpha }} = \left( {2;1;1} \right)\).
\(\sin \left( {d,\left( \alpha \right)} \right) = \left| {\cos \left( {\overrightarrow {{u_d}} ,\overrightarrow {{n_\alpha }} } \right)} \right| = \frac{{\left| {1.2 + 2.1 + \left( { - 1} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{2^2} + {1^2} + {1^2}} }} = \frac{3}{6} = \frac{1}{2}\)\( \Rightarrow \left( {d,\left( \alpha \right)} \right) = 30^\circ \).
Câu 2
Lời giải
Đáp án đúng là: C
Gọi \[A\] là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”
Gọi \[B\] là biến cố “ Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì \[P\left( {B|A} \right) = \frac{1}{6}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
