Câu hỏi:

20/12/2025 40 Lưu

1) Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1}  + 2y = 4}\\{3\sqrt {3x + 1}  - y = 5.}\end{array}} \right.\)

2) Trong mặt phẳng tọa độ \(Oxy,\) cho parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = \left( {m - 2} \right)x + 5.\)

a) Chứng minh \[\left( d \right)\] luôn cắt \(\left( P \right)\) tại hai điểm phân biệt.

b) Gọi \({x_1},{x_2}\) là hoành độ các giao điểm của \(\left( d \right)\) và \(\left( P \right).\) Tìm tất cả giá trị của \(m\) để \({x_1} + 5{x_2} = 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1) \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1} + 2y = 4\,\,\,\,\left( 1 \right)}\\{3\sqrt {3x + 1} - y = 5\,\,\,\,\left( 2 \right)}\end{array}} \right.\)

Điều kiện \(x \ge - \frac{1}{3}.\)

Nhân hai vế của phương trình \(\left( 2 \right)\) với \(2,\) ta được hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{\sqrt {3x + 1} + 2y = 4}\\{6\sqrt {3x + 1} - 2y = 10.}\end{array}} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được:

\(7\sqrt {3x + 1} = 14,\) suy ra \(\sqrt {3x + 1} = 2\) nên \(3x + 1 = 4,\) do đó \(x = 1\) (thỏa mãn \(x \ge - \frac{1}{3}).\)

Thay \(\sqrt {3x + 1} = 2\) vào phương trình \(\left( 1 \right),\) ta được:

\(2 + 2y = 4,\) do đó \(y = 1.\)

Vậy hệ phương trình có nghiệm duy nhất là \[\left( {1;\,\,1} \right).\]

2) a) Xét phương trình hoành độ giao điểm của \[\left( d \right)\]\(\left( P \right)\) là:

\({x^2} = \left( {m - 2} \right)x + 5\) hay \({x^2} - \left( {m - 2} \right)x - 5 = 0\)

Phương trình trên có \({\rm{\Delta }} = \left[ { - {{\left( {m - 2} \right)}^2}} \right] - 4 \cdot 1 \cdot \left( { - 5} \right)\)\( = {\left( {m - 2} \right)^2} + 20 > 0\) với mọi \(m \in \mathbb{R}.\)

Do đó phương trình trên luôn có hai nghiệm phân biệt.

Vậy \[\left( d \right)\] luôn cắt \[\left( P \right)\] tại hai điểm phân biệt.

b) Theo định lí Viète, ta có: \[\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = m - 2}\\{{x_1}{x_2} = - 5.}\end{array}} \right.\]

Theo bài, \({x_1} + 5{x_2} = 0\) nên suy ra \({x_1} = - 5{x_2}.\)

Kết hợp với \[{x_1}{x_2} = - 5,\] ta được: \( - 5{x_2} \cdot {x_2} = - 5,\) hay \(x_2^2 = 1,\) nên \({x_2} = 1\) hoặc \({x_2} = - 1.\)

Trường hợp 1. \({x_2} = 1,\) suy ra \({x_1} = - 5,\) kết hợp với \[{x_1} + {x_2} = m - 2,\] ta được:

\( - 5 + 1 = m - 2,\) do đó \(m = - 2.\)

Trường hợp 2. \({x_2} = - 1,\) suy ra \({x_1} = 5,\) kết hợp với \[{x_1} + {x_2} = m - 2,\] ta được:

\(5 + \left( { - 1} \right) = m - 2,\) do đó \(m = 6.\)

Vậy \(m \in \left\{ { - 2;6} \right\}\) là giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ điểm \(A\) nằm bên ngoài đường tròn (O) kẻ hai tiếp tuyến (ảnh 1)

1) Vì \(AB,\,\,AC\) là các tiếp tuyến của đường tròn \(\left( O \right)\) nên \[\widehat {ABO} = \widehat {ACO} = 90^\circ .\]

Do đó hai điểm \(B,\,\,C\) cùng nằm trên đường tròn đường kính \(AO.\)

Vậy tứ giác \(ABOC\) là tứ giác nội tiếp đường tròn đường kính \(AO.\)

2) ⦁ Ta có \(BD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {BED} = 90^\circ .\)

Xét \(\Delta ABE\) vuông tại \(E,\) ta có: \(\cos \widehat {BAE} = \frac{{AE}}{{AB}}.\)

Xét \(\Delta ABD\) vuông tại \(B,\) ta có: \(\cos \widehat {BAD} = \frac{{AB}}{{AD}}.\)

Do đó \[\frac{{AE}}{{AB}} = \frac{{AB}}{{AD}}\] hay \(A{B^2} = AE \cdot AD.\)

Lại có \(AB = AC\) (tính chất hai tiếp tuyến \(AB,\,\,AC\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A)\) và \(OB = OC\) nên đường thẳng \(AO\) là trung trực của đoạn thẳng \(BC.\) Do đó \(AO \bot BC.\)

Chứng minh tương tự như trên ta cũng có:

\(\frac{{AB}}{{AO}} = \cos \widehat {BAO} = \cos \widehat {BAH} = \frac{{AH}}{{AB}},\) suy ra \(A{B^2} = AH \cdot AO.\)

Vậy \(A{B^2} = AE \cdot AD = AH \cdot AO.\)

⦁ Chứng minh tương tự như trên, ta cũng có:

\(OH{\rm{\;}} \cdot OA = O{B^2} = O{D^2}\) hay \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)

Xét \(\Delta ODH\) và \(\Delta OAD\) có: \(\widehat {AOD}\) là góc chung và \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)

Do đó  (c.g.c). Suy ra \(\widehat {HDO} = \widehat {DAO}\) (hai góc tương ứng).  (1)

Ta có \(\widehat {AHB} = \widehat {AEB} = 90^\circ \) nên hai điểm \(H,\,\,E\) cùng nằm trên đường tròn đường kính \(AB.\)

Do đó tứ giác \(ABHE\)  nội tiếp đường tròn đường kính \(AB.\)

Suy ra \(\widehat {EBH} = \widehat {EAH}\) (hai góc nội tiếp cùng chắn cung \(EH).\) Hay \(\widehat {HBE} = \widehat {DAO}.\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(\widehat {HDO} = \widehat {HBE}.\)

3) Gọi \(K\) là giao điểm của \(BE\) và \(MN.\)

Ta có \(BD\,{\rm{//}}\,MN\) (cùng vuông góc với \(AB)\) nên \(\widehat {DBM} = \widehat {BMN}\) (hai góc so le trong).

Xét \(\Delta BHD\) và \(\Delta MKB\) có \(\widehat {DBH} = \widehat {BMK},\,\,\widehat {BDH} = \widehat {KBM}\)

Do đó  (g.g), suy ra \(\frac{{BH}}{{MK}} = \frac{{BD}}{{MB}}.\,\,\,\left( 3 \right)\)

Xét \(\Delta BCD\) và \(\Delta MNB\) có \(\widehat {BCD} = \widehat {MNB} = 90^\circ \) và \(\widehat {CBD} = \widehat {BMN}\)

Do đó  (g.g), suy ra \(\frac{{BC}}{{MN}} = \frac{{BD}}{{MB}}.\,\,\,\,\left( 4 \right)\)

Từ (3) và (4) suy ra \(\frac{{BH}}{{MK}} = \frac{{BC}}{{MN}},\) nên \(\frac{{BH}}{{BC}} = \frac{{MK}}{{MN}}.\)

Do \(OA\) là đường trung trực của \(BC\) nên \(H\) là trung điểm của \(BC,\) suy ra \(BH = \frac{1}{2}BC\) hay \(\frac{{BH}}{{BC}} = \frac{1}{2}\) nên \(\frac{{MK}}{{MN}} = \frac{1}{2},\) do đó \(K\) là trung điểm của \(MN.\)

Lời giải

1) Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta có: \({\rm{\;}}A = \frac{{16}}{{\sqrt {16} - 3}} = \frac{{16}}{{4 - 3}} = 16.\)

Vậy giá trị của \(A = 16\) khi \(x = 16.\)

2) Với \(x > 0,\,\,x \ne 9,\) ta có:

\(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\)\( = \frac{{2x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}} - \frac{{\sqrt x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2x - 3 - \sqrt x + 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)

 \( = \frac{{2x - \sqrt x }}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{\sqrt x \left( {2\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)

Vậy với \(x > 0,\,\,x \ne 9\) thì \(B = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)

3) Với \(x > 0,\,\,x \ne 9,\) ta có: \(A - B = \frac{x}{{\sqrt x - 3}} - \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}\)\( = \frac{{x - 2\sqrt x + 1}}{{\sqrt x - 3}}\)\( = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}}.\)

Để \(A - B < 0\) thì \(\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}} < 0.\,\,\,\left( * \right)\)

Ta có \({\left( {\sqrt x - 1} \right)^2} \ge 0\) với mọi \(x \ge 0.\)

Do đó từ \(\left( * \right)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x - 1 \ne 0}\\{\sqrt x - 3 < 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x \ne 1}\\{\sqrt x < 3}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{x < 9.}\end{array}} \right.\)

Kết hợp điều kiện \(x > 0,\,\,x \ne 9,\) ta có: \(0 < x < 9,\,\,x \ne 1.\)

Vậy \(0 < x < 9,\,\,x \ne 1\) thì \(A - B < 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP