Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( O \right),\) kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) \((B,\,\,C\) là hai tiếp điểm).
1) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.
2) Vẽ đường kính \(BD\) của đường tròn \(\left( O \right).\) Gọi \(E\) là giao điểm thứ hai của đường thẳng \(AD\) và đường tròn \(\left( O \right).\) Đường thẳng \(BC\) và đường thẳng \(AO\) cắt nhau tại \(H.\) Chứng minh \(A{B^2} = AE \cdot AD = AH \cdot AO\) và \(\widehat {HDO} = \widehat {HBE}.\)
3) Lấy điểm \(M\) thuộc tia đối của tia \(CB.\) Gọi \(N\) là chân đường vuông góc kẻ từ điểm \(M\) đến đường thẳng \(AB.\) Chứng minh đường thẳng \(BE\) đi qua trung điểm của đoạn thẳng \(MN.\)
Từ điểm \(A\) nằm bên ngoài đường tròn \(\left( O \right),\) kẻ hai tiếp tuyến \(AB,\,\,AC\) với đường tròn \(\left( O \right)\) \((B,\,\,C\) là hai tiếp điểm).
1) Chứng minh tứ giác \(ABOC\) là tứ giác nội tiếp.
2) Vẽ đường kính \(BD\) của đường tròn \(\left( O \right).\) Gọi \(E\) là giao điểm thứ hai của đường thẳng \(AD\) và đường tròn \(\left( O \right).\) Đường thẳng \(BC\) và đường thẳng \(AO\) cắt nhau tại \(H.\) Chứng minh \(A{B^2} = AE \cdot AD = AH \cdot AO\) và \(\widehat {HDO} = \widehat {HBE}.\)
3) Lấy điểm \(M\) thuộc tia đối của tia \(CB.\) Gọi \(N\) là chân đường vuông góc kẻ từ điểm \(M\) đến đường thẳng \(AB.\) Chứng minh đường thẳng \(BE\) đi qua trung điểm của đoạn thẳng \(MN.\)
Quảng cáo
Trả lời:

1) Vì \(AB,\,\,AC\) là các tiếp tuyến của đường tròn \(\left( O \right)\) nên \[\widehat {ABO} = \widehat {ACO} = 90^\circ .\]
Do đó hai điểm \(B,\,\,C\) cùng nằm trên đường tròn đường kính \(AO.\)
Vậy tứ giác \(ABOC\) là tứ giác nội tiếp đường tròn đường kính \(AO.\)
2) ⦁ Ta có \(BD\) là đường kính của đường tròn \(\left( O \right)\) nên \(\widehat {BED} = 90^\circ .\)
Xét \(\Delta ABE\) vuông tại \(E,\) ta có: \(\cos \widehat {BAE} = \frac{{AE}}{{AB}}.\)
Xét \(\Delta ABD\) vuông tại \(B,\) ta có: \(\cos \widehat {BAD} = \frac{{AB}}{{AD}}.\)
Do đó \[\frac{{AE}}{{AB}} = \frac{{AB}}{{AD}}\] hay \(A{B^2} = AE \cdot AD.\)
Lại có \(AB = AC\) (tính chất hai tiếp tuyến \(AB,\,\,AC\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A)\) và \(OB = OC\) nên đường thẳng \(AO\) là trung trực của đoạn thẳng \(BC.\) Do đó \(AO \bot BC.\)
Chứng minh tương tự như trên ta cũng có:
\(\frac{{AB}}{{AO}} = \cos \widehat {BAO} = \cos \widehat {BAH} = \frac{{AH}}{{AB}},\) suy ra \(A{B^2} = AH \cdot AO.\)
Vậy \(A{B^2} = AE \cdot AD = AH \cdot AO.\)
⦁ Chứng minh tương tự như trên, ta cũng có:
\(OH{\rm{\;}} \cdot OA = O{B^2} = O{D^2}\) hay \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)
Xét \(\Delta ODH\) và \(\Delta OAD\) có: \(\widehat {AOD}\) là góc chung và \(\frac{{OD}}{{OA}} = \frac{{OH}}{{OD}}.\)
Do đó (c.g.c). Suy ra \(\widehat {HDO} = \widehat {DAO}\) (hai góc tương ứng). (1)
Ta có \(\widehat {AHB} = \widehat {AEB} = 90^\circ \) nên hai điểm \(H,\,\,E\) cùng nằm trên đường tròn đường kính \(AB.\)
Do đó tứ giác \(ABHE\) nội tiếp đường tròn đường kính \(AB.\)
Suy ra \(\widehat {EBH} = \widehat {EAH}\) (hai góc nội tiếp cùng chắn cung \(EH).\) Hay \(\widehat {HBE} = \widehat {DAO}.\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(\widehat {HDO} = \widehat {HBE}.\)
3) Gọi \(K\) là giao điểm của \(BE\) và \(MN.\)
Ta có \(BD\,{\rm{//}}\,MN\) (cùng vuông góc với \(AB)\) nên \(\widehat {DBM} = \widehat {BMN}\) (hai góc so le trong).
Xét \(\Delta BHD\) và \(\Delta MKB\) có \(\widehat {DBH} = \widehat {BMK},\,\,\widehat {BDH} = \widehat {KBM}\)
Do đó (g.g), suy ra \(\frac{{BH}}{{MK}} = \frac{{BD}}{{MB}}.\,\,\,\left( 3 \right)\)
Xét \(\Delta BCD\) và \(\Delta MNB\) có \(\widehat {BCD} = \widehat {MNB} = 90^\circ \) và \(\widehat {CBD} = \widehat {BMN}\)
Do đó (g.g), suy ra \(\frac{{BC}}{{MN}} = \frac{{BD}}{{MB}}.\,\,\,\,\left( 4 \right)\)
Từ (3) và (4) suy ra \(\frac{{BH}}{{MK}} = \frac{{BC}}{{MN}},\) nên \(\frac{{BH}}{{BC}} = \frac{{MK}}{{MN}}.\)
Do \(OA\) là đường trung trực của \(BC\) nên \(H\) là trung điểm của \(BC,\) suy ra \(BH = \frac{1}{2}BC\) hay \(\frac{{BH}}{{BC}} = \frac{1}{2}\) nên \(\frac{{MK}}{{MN}} = \frac{1}{2},\) do đó \(K\) là trung điểm của \(MN.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Thay \(x = 16\) (thỏa mãn) vào biểu thức \(A,\) ta có: \({\rm{\;}}A = \frac{{16}}{{\sqrt {16} - 3}} = \frac{{16}}{{4 - 3}} = 16.\)
Vậy giá trị của \(A = 16\) khi \(x = 16.\)
2) Với \(x > 0,\,\,x \ne 9,\) ta có:
\(B = \frac{{2x - 3}}{{x - 3\sqrt x }} - \frac{1}{{\sqrt x }}\)\( = \frac{{2x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}} - \frac{{\sqrt x - 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2x - 3 - \sqrt x + 3}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)
\( = \frac{{2x - \sqrt x }}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{\sqrt x \left( {2\sqrt x - 1} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\)\( = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
Vậy với \(x > 0,\,\,x \ne 9\) thì \(B = \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}.\)
3) Với \(x > 0,\,\,x \ne 9,\) ta có: \(A - B = \frac{x}{{\sqrt x - 3}} - \frac{{2\sqrt x - 1}}{{\sqrt x - 3}}\)\( = \frac{{x - 2\sqrt x + 1}}{{\sqrt x - 3}}\)\( = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}}.\)
Để \(A - B < 0\) thì \(\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x - 3}} < 0.\,\,\,\left( * \right)\)
Ta có \({\left( {\sqrt x - 1} \right)^2} \ge 0\) với mọi \(x \ge 0.\)
Do đó từ \(\left( * \right)\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x - 1 \ne 0}\\{\sqrt x - 3 < 0}\end{array}} \right.\) hay \(\left\{ {\begin{array}{*{20}{l}}{\sqrt x \ne 1}\\{\sqrt x < 3}\end{array}} \right.\) nên \(\left\{ {\begin{array}{*{20}{l}}{x \ne 1}\\{x < 9.}\end{array}} \right.\)
Kết hợp điều kiện \(x > 0,\,\,x \ne 9,\) ta có: \(0 < x < 9,\,\,x \ne 1.\)
Vậy \(0 < x < 9,\,\,x \ne 1\) thì \(A - B < 0.\)
Lời giải
1) Gọi số xe tải loại lớn mà đội vận chuyển sử dụng là \(x\) (xe) \(\left( {x \in \mathbb{N}*} \right).\)
Số xe tải loại nhỏ mà đội cần sử dụng theo kế hoạch là \(x + 2\) (xe).
Mỗi xe tải loại lớn vận chuyển được là \(\frac{{15}}{x}\) (tấn).
Mỗi xe tải loại nhỏ theo kế hoạch vận chuyển được là \(\frac{{15}}{{x + 2}}\) (tấn).
Theo bài, mỗi xe tải lớn chở nhiều hơn mỗi xe tải loại nhỏ 2 tấn nên ta có phương trình:
\(\frac{{15}}{x} - \frac{{15}}{{x + 2}} = 2\)
\(15\left( {x + 2} \right) - 15x = 2x\left( {x + 2} \right)\)
\(15x + 30 - 15x = 2{x^2} + 4x\)
\(2{x^2} + 4x - 30 = 0\)
\(x = 3\) hoặc \(x = - 5.\)
Ta thấy chỉ có giá trị \(x = 3\) thỏa mãn điều kiện.
Vậy xe tải loại lớn mà đội vận chuyển cần dùng là \(3\) xe.
2) Diện tích xung quanh của bình đựng nước là:
\({S_4} = 2\pi rh = 2\pi \cdot 4 \cdot 25 = 200\pi \approx 628{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Vậy diện tích xung quanh của bình đựng nước khoảng \(628{\rm{\;c}}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.