Câu hỏi:

20/12/2025 6 Lưu

Cho phương trình: \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0\). (\(m\) là tham số).

1) Tìm các giá trị của tham số \(m\) để phương trình đã cho có nghiệm bằng 2.

2) Tìm các giá trị của tham số \(m\) để phương trình đã cho có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn điều kiện \(4{x_1} - 3{x_2} = 25\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

1) Để phương trình có nghiệm bằng 2, thay \(x = 2\) vào phương trình, ta được:

\({2^2} - 2\left( {m - 2} \right) \cdot 2 + {m^2} - 8 = 0\) hay \(4 - 4m + 8 + {m^2} - 8 = 0\).

Khi đó \({m^2} - 4m + 4 = 0\) hay \({\left( {m - 2} \right)^2} = 0\) nên \(m = 2\).

Vậy \(m = 2\) thì phương trình có nghiệm \(x = 2\)

2) \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 8 = 0 & \left( 1 \right)\)

Ta có \[\Delta = 4{\left( {m - 2} \right)^2} - 4\left( {{m^2} - 8} \right) = 4{m^2} - 16m + 16 - 4{m^2} + 32 = - 32m + 48\].

Để phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt thì \[\Delta > 0\] hay \[ - 32m + 48 > 0\] nên \[m < 3.\]

Khi đó \(\left( 1 \right)\) có hai nghiệm phân biệt \[{x_1},{\rm{ }}{x_2}.\]

Áp dụng hệ thức Vite, ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 2\left( {m - 2} \right)}\\{{x_1}{x_2} = {m^2} - 8}\end{array}} \right.\).

Để \(4{x_1} - 3{x_2} = 25\) thì \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25}\\{{x_1} + {x_2} = 2m - 4\,\,\,\,\,\left( 2 \right)}\end{array}} \right.\).

Nhân hai vế của phương trình \[\left( 2 \right)\] với 4, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{4{x_1} - 3{x_2} = 25 & & \left( 3 \right)}\\{4{x_1} + 4{x_2} = 8m - 16 & \left( 4 \right)}\end{array}} \right..\)

Trừ từng vế phương trình \(\left( 4 \right)\) cho \(\left( 3 \right)\) ta được: \(7{x_2} = 8m - 41\), tức là \({x_2} = \frac{{8m - 41}}{7}.\)

Thế \({x_2} = \frac{{8m - 41}}{7}\) vào phương trình \[\left( 2 \right)\] ta có: \({x_1} + \frac{{8m - 41}}{7} = 2m - 4\) hay \({x_1} = \frac{{6m + 13}}{7}.\)

Thay \({x_1} = \frac{{6m + 13}}{7}\,;\,\,{x_2} = \frac{{8m - 41}}{7}\) vào \({x_1}{x_2} = {m^2} - 8\) ta được

\(\frac{{6m + 13}}{7} \cdot \frac{{8m - 41}}{7} = {m^2} - 8\)

\(\frac{{\left( {6m + 13} \right)\left( {8m - 41} \right)}}{{49}} = {m^2} - 8\)

\[\left( {6m + 13} \right)\left( {8m - 41} \right) = 49\left( {{m^2} - 8} \right)\]

\(48{m^2} - 142m - 533 = 49{m^2} - 392\)

\({m^2} + 142m + 141 = 0\).

Ta thấy \(1 - 142 + 141 = 0\) nên phương trình có nghiệm \(m = - 1\) hoặc \(m = - 141\) (thỏa mãn \(m < 3).\)

Vậy \[m \in \left\{ { - 1\,;\,\, - 141} \right\}\] thì phương trình đã cho có hai nghiệm phân biệt \({x_1}\), \({x_2}\) thỏa mãn điều kiện \(4{x_1} - 3{x_2} = 25.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1) Do \(\widehat {AMB} = \widehat {ANB} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn) nên \(\widehat {CMB} = \widehat {CND} = 90^\circ .\)

Xét tứ giác \[CMDN\]

\[\widehat {CMD} + \widehat {CND} = 90^\circ + 90^\circ = 180^\circ .\]

hai góc này ở vị trí đối diện nên tứ giác \[CMDN\] nội tiếp được trong đường tròn.

Cho đường tròn tâm \(O\) đường kính \[AB\] và \(M\) là điểm chính giữa của cung (ảnh 1)

2) Xét \(\Delta AMD\)\(\Delta ANC\)\(\widehat {NAC}\) chung; \(\widehat {AMD} = \widehat {ANC} = 90^\circ .\)

Do đó , suy ra \(\frac{{AM}}{{AN}} = \frac{{AD}}{{AC}}\) hay \(AM \cdot AC = AN \cdot AD\).

3) Do \[ABNM\] nội tiếp \(\left( O \right)\) nên \(\widehat {BAM} + \widehat {BNM} = 180^\circ \).

Mà \(\widehat {BNM} + \widehat {CNM} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CNM} = \widehat {BAM}\).

\[\widehat {CNM} = \widehat {MCD}\] (góc nội tiếp cùng chắn cung

Suy ra \(\widehat {MCD} = \widehat {OMB}\,\,\left( { = \widehat {CNM}} \right)\) hay \(\widehat {MCD} = \widehat {OMB}.\)

4) Do \[M\] là điểm chính giữa cung \[AB\] nên \(MA = MB\).

Suy ra \(\widehat {MNA} = \widehat {MAB}\) (góc nội tiếp chắn hai cung bằng nhau).

Xét \(\Delta MAN\)\(\Delta MAE\)\(\widehat {AME}\) chung; \(\widehat {MNA} = \widehat {MAE}\,\,({\rm{cmt}})\).

Do đó .

Suy ra \(\widehat {MAN} = \widehat {MEA}\) (hai góc tương ứng).

\[\widehat {MAN} = \widehat {MBN}\] (góc nội tiếp cùng chắn  nên \(\widehat {MBN} = \widehat {MEB}\).

Do đó \(\widehat {DBN} = \widehat {NEB}\) (đpcm).

Lời giải

1) a) \({x^4} - 8{x^2} - 9 = 0\). Đặt \(t = {x^2}\,\,\left( {t \ge 0} \right)\). Phương trình đã cho trở thành \({t^2} - 8t - 9 = 0.\)

Ta thấy \(1 - \left( { - 8} \right) + \left( { - 9} \right) = 0\) nên phương trình có 2 nghiệm \(t = - 1\) (loại) hoặc \(t = 9\,\,\left( {{\rm{TM}}} \right).\)

Với \(t = 9\) thì \({x^2} = 9\). Do đó \(x = 3\) hoặc \(x = - 3.\)

Vậy phương trình đã cho có nghiệm \[x = - 3\,;\,\,x = 3.\]  

b) \(\left\{ {\begin{array}{*{20}{l}}{x + y = 9}\\{3x - 2y = - 3}\end{array}} \right.\). Nhân hai vế của phương trình thứ nhất với 2, ta được hệ: \(\left\{ {\begin{array}{*{20}{l}}{2x + 2y = 18}\\{3x - 2y = - 3}\end{array}} \right..\)

Cộng từng vế của phương trình mới, ta được: \[5x = 15\], tức là \[x = 3.\]

Thế \[x = 3\] vào phương trình \[x + y = 9\] ta có: \[3 + y = 9\] hay \[y = 6\].

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x\,;\,\,y} \right) = \left( {3\,;\,\,6} \right)\).

2) \(M = 2\sqrt {9 - 4\sqrt 5 } - \sqrt {20} = 2\sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt {4 \cdot 5} \)\( = 2\left| {\sqrt 5 - 2} \right| - 2\sqrt 5 = 2\sqrt 5 - 4 - 2\sqrt 5 = - 4\).

Vậy \(M = 2\sqrt {9 - 4\sqrt 5 } = - 4\).