Cho biểu thức \[T = \left( {\frac{{\sqrt a + 1}}{{\sqrt a - 1}} - \frac{{\sqrt a - 1}}{{\sqrt a + 1}}} \right){\left( {\frac{{\sqrt a }}{4} - \frac{1}{{4\sqrt a }}} \right)^2}\] với \(a\, > \,0\,,\,\,a \ne 1.\)
a) Rút gọn biểu thức \(T.\)
b) Tìm tất cả các giá trị của \(a\) để \(T = - \,\sqrt a - 1.\)
Cho biểu thức \[T = \left( {\frac{{\sqrt a + 1}}{{\sqrt a - 1}} - \frac{{\sqrt a - 1}}{{\sqrt a + 1}}} \right){\left( {\frac{{\sqrt a }}{4} - \frac{1}{{4\sqrt a }}} \right)^2}\] với \(a\, > \,0\,,\,\,a \ne 1.\)
a) Rút gọn biểu thức \(T.\)
b) Tìm tất cả các giá trị của \(a\) để \(T = - \,\sqrt a - 1.\)
Quảng cáo
Trả lời:
|
1) \[T = \left( {\frac{{{{\left( {\sqrt a + 1} \right)}^2} - {{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}} \right){\left( {\frac{{\sqrt a }}{4} - \frac{1}{{4\sqrt a }}} \right)^2}\] |
|
\[ = \left( {\frac{{{{\left( {\sqrt a + 1} \right)}^2} - {{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a - 1} \right)\left( {\sqrt a + 1} \right)}}} \right){\left( {\frac{{a - 1}}{{4\sqrt a }}} \right)^2}\] |
|
\[ = \frac{{4\sqrt a }}{{a - 1}}.\frac{{{{\left( {a - 1} \right)}^2}}}{{{{\left( {4\sqrt a } \right)}^2}}}\] |
|
\[ = \frac{{a - 1}}{{4\sqrt a }}.\] |
|
2) \[\frac{{a - 1}}{{4\sqrt a }} = - \,\sqrt a - 1 \Leftrightarrow 5a + 4\sqrt a - 1 = 0\] |
|
\[\sqrt a = - 1\] hoặc \[\sqrt a = \frac{1}{5}\]. Kết luận \(a = \frac{1}{{25}}.\) |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Tứ giác \(AMCO\) có : \(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\) |
|
\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\) Vậy tứ giác \(AMCO\) nội tiếp đường tròn. |
|
Tương tự ta có tứ giác \(COBN\) nội tiếp |
|
\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)
|
|
b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\) |
|
Mà \(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\) |
|
Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2) Từ (1) và (2) ta được \(\Delta AKM\)ഗ\(\Delta NKB\) |
|
\( \Rightarrow \widehat {AKM} = \widehat {NKB}\) Mà \(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm). |
|
c) Ta có \(\Delta MON\)ഗ\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\) |
|
\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\) |
Lời giải
|
Ta có \(\widehat {ABC} = \frac{1}{2}\widehat {AIM} = \widehat {AIK}\,\,;\,\,\widehat {ACB} = \frac{1}{2}\widehat {AKM} = \widehat {AKI}\). |
|
\(\widehat {AIK} + \widehat {AKI} = \,\,\widehat {ABC} + \widehat {ACB} = {90^0}\)nên tam giác \(AIK\) vuông tại A |
|
\({S_{AIK}} = \frac{1}{2}AI.AK \ge \frac{1}{2}AE.AF = \frac{1}{8}AB.AC\), với \(E,\,F\) theo thứ tự là trung điểm của \(AB,\,AC\) |
|
Đẳng thức xảy ra khi \(I \equiv E\) và \(K \equiv F,\) khi đó \(M \equiv H.\) |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là \(20\% \) và mặt hàng Y là \(15\% \) so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là \(395000\) đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là \(30\% \) và mặt hàng Y là \(25\% .\) Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là \(603000\) đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).
b) Tìm tất cả các giá trị của tham số \[m\] để phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thoả mãn điều kiện \[4{x_1} + 3{x_2} = 1.\]
a) Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là \(20\% \) và mặt hàng Y là \(15\% \) so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là \(395000\) đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là \(30\% \) và mặt hàng Y là \(25\% .\) Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là \(603000\) đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).
b) Tìm tất cả các giá trị của tham số \[m\] để phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thoả mãn điều kiện \[4{x_1} + 3{x_2} = 1.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.