Câu hỏi:

23/12/2025 53 Lưu

a) Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là \(20\% \) và mặt hàng Y là \(15\% \) so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là \(395000\) đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là \(30\% \) và mặt hàng Y là \(25\% .\) Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là \(603000\) đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).

b) Tìm tất cả các giá trị của tham số \[m\] để phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thoả mãn điều kiện \[4{x_1} + 3{x_2} = 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi giá niêm yết của mặt hàng X và Y lần lượt là \[x,y\] (đồng)

Lập được hệ phương trình \[\left\{ \begin{array}{l}2x\left( {1 - 20\% } \right) + y\left( {1 - 15\% } \right)\,\,\,\, = 395000\\3x\left( {1 - 30\% } \right) + 2y\left( {1 - 25\% } \right) = 603000\end{array} \right.\]

Giải được \[\left\{ \begin{array}{l}x = 130000\\y = 220000\end{array} \right.\,\]

Kết luận đúng.

b)Ta có \(\Delta = - 4m + 29\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta > 0 \Leftrightarrow m < \frac{{29}}{4}\)

Theo hệ thức Vi-ét ta có : \[{x_1} + {x_2} = 2m - 1\]; \[\,{x_1}.{x_2} = {m^2} - 7\]

Ta có : \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\\4{x_1} + 3{x_2} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} = 4 - 6m\\{x_2} = 8m - 5\end{array} \right.\]

\[{x_1}.{x_2} = {m^2} - 7 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{{13}}{{49}}\end{array} \right.\] (nhận).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm \(O\) có đường kính \(AB = 2R.\) Từ \(A\) và \(B\) lần lượt kẻ hai tiếp tuyến (ảnh 1)

a) Tứ giác \(AMCO\) có :

\(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\)

\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\)

Vậy tứ giác \(AMCO\) nội tiếp đường tròn.

Tương tự ta có tứ giác \(COBN\) nội tiếp

\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)

 

b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\)

\(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\)

Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2)

Từ (1) và (2) ta được \(\Delta AKM\)\(\Delta NKB\)

\( \Rightarrow \widehat {AKM} = \widehat {NKB}\)

\(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm).


c) Ta có \(\Delta MON\)\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\)

\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\)

Lời giải

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là một điểm trên cạnh (ảnh 1)

Ta có \(\widehat {ABC} = \frac{1}{2}\widehat {AIM} = \widehat {AIK}\,\,;\,\,\widehat {ACB} = \frac{1}{2}\widehat {AKM} = \widehat {AKI}\).

\(\widehat {AIK} + \widehat {AKI} = \,\,\widehat {ABC} + \widehat {ACB} = {90^0}\)nên tam giác \(AIK\) vuông tại A

\({S_{AIK}} = \frac{1}{2}AI.AK \ge \frac{1}{2}AE.AF = \frac{1}{8}AB.AC\), với \(E,\,F\) theo thứ tự là trung điểm của \(AB,\,AC\)

Đẳng thức xảy ra khi \(I \equiv E\)\(K \equiv F,\) khi đó \(M \equiv H.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP