Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là một điểm trên cạnh \(BC,\) \(I\) và \(K\) lần lượt là tâm đường tròn ngoại tiếp tam giác \(ABM\) và tam giác \(ACM.\) Xác định vị trí của \(M\) để diện tích tam giác\(AIK\)nhỏ nhất.
Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là một điểm trên cạnh \(BC,\) \(I\) và \(K\) lần lượt là tâm đường tròn ngoại tiếp tam giác \(ABM\) và tam giác \(ACM.\) Xác định vị trí của \(M\) để diện tích tam giác\(AIK\)nhỏ nhất.
Quảng cáo
Trả lời:
|
Ta có \(\widehat {ABC} = \frac{1}{2}\widehat {AIM} = \widehat {AIK}\,\,;\,\,\widehat {ACB} = \frac{1}{2}\widehat {AKM} = \widehat {AKI}\). |
|
\(\widehat {AIK} + \widehat {AKI} = \,\,\widehat {ABC} + \widehat {ACB} = {90^0}\)nên tam giác \(AIK\) vuông tại A |
|
\({S_{AIK}} = \frac{1}{2}AI.AK \ge \frac{1}{2}AE.AF = \frac{1}{8}AB.AC\), với \(E,\,F\) theo thứ tự là trung điểm của \(AB,\,AC\) |
|
Đẳng thức xảy ra khi \(I \equiv E\) và \(K \equiv F,\) khi đó \(M \equiv H.\) |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Tứ giác \(AMCO\) có : \(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\) |
|
\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\) Vậy tứ giác \(AMCO\) nội tiếp đường tròn. |
|
Tương tự ta có tứ giác \(COBN\) nội tiếp |
|
\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)
|
|
b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\) |
|
Mà \(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\) |
|
Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2) Từ (1) và (2) ta được \(\Delta AKM\)ഗ\(\Delta NKB\) |
|
\( \Rightarrow \widehat {AKM} = \widehat {NKB}\) Mà \(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm). |
|
c) Ta có \(\Delta MON\)ഗ\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\) |
|
\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\) |
Lời giải
|
\[ \Leftrightarrow \left( {\sqrt {{x^2} + x + 2} - 2x} \right)\left( {\sqrt {{x^2} + x + 2} + 3} \right) = 0\] |
|
\[ \Leftrightarrow \sqrt {{x^2} + x + 2} - 2x = 0\] (vì \[\sqrt {{x^2} + x + 2} + 3 > 0\,\forall x\]) |
|
\( \Rightarrow 3{x^2} - x - 2 = 0 \Rightarrow x = 1,\,\,x = - \frac{2}{3}\) |
|
Thử lại và kết luận nghiệm của phương trình đã cho là \(x = 1.\) |
Câu 3
a) Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là \(20\% \) và mặt hàng Y là \(15\% \) so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là \(395000\) đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là \(30\% \) và mặt hàng Y là \(25\% .\) Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là \(603000\) đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).
b) Tìm tất cả các giá trị của tham số \[m\] để phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thoả mãn điều kiện \[4{x_1} + 3{x_2} = 1.\]
a) Nhân dịp kỉ niệm 10 năm thành lập, cửa hàng GNH có thực hiện chương trình giảm giá cho mặt hàng X là \(20\% \) và mặt hàng Y là \(15\% \) so với giá niêm yết. Bà Giới mua 2 món hàng X và 1 món hàng Y phải trả số tiền là \(395000\) đồng. Ngày cuối cùng của chương trình, cửa hàng thay đổi bằng cách giảm giá mặt hàng X là \(30\% \) và mặt hàng Y là \(25\% .\) Vào ngày hôm đó, cô Định mua 3 món hàng X và 2 món hàng Y thì trả số tiền là \(603000\) đồng. Tính giá niêm yết của mỗi món hàng X và Y (giá niêm yết là giá ghi trên món hàng nhưng chưa thực hiện giảm giá).
b) Tìm tất cả các giá trị của tham số \[m\] để phương trình \[{x^2} - \left( {2m - 1} \right)x + {m^2} - 7 = 0\] có hai nghiệm phân biệt \[{x_1},{x_2}\] thoả mãn điều kiện \[4{x_1} + 3{x_2} = 1.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.