Câu hỏi:

23/12/2025 14 Lưu

Cho \(a \ge 0,\,b \ge 0\) thỏa mãn \(2a + 3b \le 6\) và \(2a + b \le 4.\) Chứng minh rằng:

\( - \frac{{22}}{9} \le {a^2} - 2a - b \le 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(2a + 3b \le 6 \Rightarrow - \,b \ge \frac{2}{3}a - 2\)

\({a^2} - 2a - b \ge {a^2} - 2a + \frac{2}{3}a - 2 = {\left( {a - \frac{2}{3}} \right)^2} - \frac{{22}}{9} \ge - \frac{{22}}{9}\,\,\left( 1 \right)\)

\(2a + b \le 4 \Rightarrow 2{a^2} + ab \le 4a\)

\( \Rightarrow {a^2} - 2a - b \le - \frac{{ab}}{2} - b \le 0\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra điều phải chứng minh.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm \(O\) có đường kính \(AB = 2R.\) Từ \(A\) và \(B\) lần lượt kẻ hai tiếp tuyến (ảnh 1)

a) Tứ giác \(AMCO\) có :

\(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\)

\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\)

Vậy tứ giác \(AMCO\) nội tiếp đường tròn.

Tương tự ta có tứ giác \(COBN\) nội tiếp

\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)

 

b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\)

\(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\)

Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2)

Từ (1) và (2) ta được \(\Delta AKM\)\(\Delta NKB\)

\( \Rightarrow \widehat {AKM} = \widehat {NKB}\)

\(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm).


c) Ta có \(\Delta MON\)\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\)

\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\)

Lời giải

\[ \Leftrightarrow \left( {\sqrt {{x^2} + x + 2} - 2x} \right)\left( {\sqrt {{x^2} + x + 2} + 3} \right) = 0\]

\[ \Leftrightarrow \sqrt {{x^2} + x + 2} - 2x = 0\] (vì \[\sqrt {{x^2} + x + 2} + 3 > 0\,\forall x\])

\( \Rightarrow 3{x^2} - x - 2 = 0 \Rightarrow x = 1,\,\,x = - \frac{2}{3}\)

Thử lại và kết luận nghiệm của phương trình đã cho là \(x = 1.\)