Câu hỏi:

23/12/2025 38 Lưu

Cho \(a \ge 0,\,b \ge 0\) thỏa mãn \(2a + 3b \le 6\) và \(2a + b \le 4.\) Chứng minh rằng:

\( - \frac{{22}}{9} \le {a^2} - 2a - b \le 0.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(2a + 3b \le 6 \Rightarrow - \,b \ge \frac{2}{3}a - 2\)

\({a^2} - 2a - b \ge {a^2} - 2a + \frac{2}{3}a - 2 = {\left( {a - \frac{2}{3}} \right)^2} - \frac{{22}}{9} \ge - \frac{{22}}{9}\,\,\left( 1 \right)\)

\(2a + b \le 4 \Rightarrow 2{a^2} + ab \le 4a\)

\( \Rightarrow {a^2} - 2a - b \le - \frac{{ab}}{2} - b \le 0\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra điều phải chứng minh.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm \(O\) có đường kính \(AB = 2R.\) Từ \(A\) và \(B\) lần lượt kẻ hai tiếp tuyến (ảnh 1)

a) Tứ giác \(AMCO\) có :

\(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\)

\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\)

Vậy tứ giác \(AMCO\) nội tiếp đường tròn.

Tương tự ta có tứ giác \(COBN\) nội tiếp

\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)

 

b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\)

\(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\)

Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2)

Từ (1) và (2) ta được \(\Delta AKM\)\(\Delta NKB\)

\( \Rightarrow \widehat {AKM} = \widehat {NKB}\)

\(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm).


c) Ta có \(\Delta MON\)\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\)

\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\)

Lời giải

a) Gọi giá niêm yết của mặt hàng X và Y lần lượt là \[x,y\] (đồng)

Lập được hệ phương trình \[\left\{ \begin{array}{l}2x\left( {1 - 20\% } \right) + y\left( {1 - 15\% } \right)\,\,\,\, = 395000\\3x\left( {1 - 30\% } \right) + 2y\left( {1 - 25\% } \right) = 603000\end{array} \right.\]

Giải được \[\left\{ \begin{array}{l}x = 130000\\y = 220000\end{array} \right.\,\]

Kết luận đúng.

b)Ta có \(\Delta = - 4m + 29\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta > 0 \Leftrightarrow m < \frac{{29}}{4}\)

Theo hệ thức Vi-ét ta có : \[{x_1} + {x_2} = 2m - 1\]; \[\,{x_1}.{x_2} = {m^2} - 7\]

Ta có : \[\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\\4{x_1} + 3{x_2} = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_1} = 4 - 6m\\{x_2} = 8m - 5\end{array} \right.\]

\[{x_1}.{x_2} = {m^2} - 7 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \frac{{13}}{{49}}\end{array} \right.\] (nhận).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP