Câu hỏi:

23/12/2025 18 Lưu

Giải phương trình \[{x^2} - 5x + 2 + \left( {3 - 2x} \right)\sqrt {{x^2} + x + 2} = 0.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\[ \Leftrightarrow \left( {\sqrt {{x^2} + x + 2} - 2x} \right)\left( {\sqrt {{x^2} + x + 2} + 3} \right) = 0\]

\[ \Leftrightarrow \sqrt {{x^2} + x + 2} - 2x = 0\] (vì \[\sqrt {{x^2} + x + 2} + 3 > 0\,\forall x\])

\( \Rightarrow 3{x^2} - x - 2 = 0 \Rightarrow x = 1,\,\,x = - \frac{2}{3}\)

Thử lại và kết luận nghiệm của phương trình đã cho là \(x = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho nửa đường tròn tâm \(O\) có đường kính \(AB = 2R.\) Từ \(A\) và \(B\) lần lượt kẻ hai tiếp tuyến (ảnh 1)

a) Tứ giác \(AMCO\) có :

\(\widehat {MAO} = {90^{\rm{o}}};\) \(\widehat {MCO} = {90^{\rm{o}}}\)

\(\widehat {MAO} + \widehat {MCO} = {180^{\rm{o}}}\)

Vậy tứ giác \(AMCO\) nội tiếp đường tròn.

Tương tự ta có tứ giác \(COBN\) nội tiếp

\( \Rightarrow \widehat {CBO} = \widehat {CNO}\)

 

b)Ta có: \(CK//AM\) nên \(\frac{{KN}}{{KA}} = \frac{{CN}}{{CM}}\)

\(MC = MA,\,\,NC = NB\) nên \(\frac{{KN}}{{KA}} = \frac{{NB}}{{MA}}\,\,\left( 1 \right)\)

Ta lại có\(\widehat {MAK} = \widehat {ANB}\) (so le trong) (2)

Từ (1) và (2) ta được \(\Delta AKM\)\(\Delta NKB\)

\( \Rightarrow \widehat {AKM} = \widehat {NKB}\)

\(A,\,K,\,N\) thẳng hàng nên \(M,\,K,\,B\) thẳng hàng (đpcm).


c) Ta có \(\Delta MON\)\(\Delta ACB\) nên tam giác \(MON\) vuông tại O, cho ta: \(O{C^2} = CM.CN \Rightarrow CN = \frac{2}{3}R\) ; \(MN = MC + CN = \frac{{13}}{6}R\)

\(\frac{{{S_1}}}{S} = {\left( {\frac{{MN}}{{AB}}} \right)^2} = \frac{{169}}{{144}}.\)

Lời giải

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(M\) là một điểm trên cạnh (ảnh 1)

Ta có \(\widehat {ABC} = \frac{1}{2}\widehat {AIM} = \widehat {AIK}\,\,;\,\,\widehat {ACB} = \frac{1}{2}\widehat {AKM} = \widehat {AKI}\).

\(\widehat {AIK} + \widehat {AKI} = \,\,\widehat {ABC} + \widehat {ACB} = {90^0}\)nên tam giác \(AIK\) vuông tại A

\({S_{AIK}} = \frac{1}{2}AI.AK \ge \frac{1}{2}AE.AF = \frac{1}{8}AB.AC\), với \(E,\,F\) theo thứ tự là trung điểm của \(AB,\,AC\)

Đẳng thức xảy ra khi \(I \equiv E\)\(K \equiv F,\) khi đó \(M \equiv H.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP