Câu hỏi:

24/12/2025 88 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\). Tính khoảng cách từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).

A. \(\frac{a}{2}\).  
B. \(\frac{{a\sqrt 2 }}{2}\).  
C. \(\frac{{a\sqrt 2 }}{3}\).  
D. \[\frac{{a\sqrt 2 }}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,SA vuông góc (ABCD). Tính khoảng cách từ điểm B đến mặt phẳng (SAC). (ảnh 1)

Gọi \(O\) là tâm của hình vuông \(ABCD\).

Vì \(ABCD\) là hình vuông nên \(AC \bot BO\) mà \(BO \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\).

Suy ra \(BO \bot \left( {SAC} \right)\)

Do đó \(d\left( {B,\left( {SAC} \right)} \right) = BO\).

Vì \(ABCD\) là hình vuông cạnh a nên \(BD = a\sqrt 2  \Rightarrow BO = \frac{{a\sqrt 2 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Điều kiện: \(30 - {x^2} > 0 \Leftrightarrow  - \sqrt {30}  < x < \sqrt {30} \).

Mà \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}\).

Vậy có 11 giá trị nguyên trong tập xác định.

Câu 2

A. \({\log _a}{a^c} = c\).                
B. \({\log _a}a = 1\).
C. \({\log _a}{b^\alpha } = \alpha {\log _a}b\).  
D. \({\log _a}\left| {b - c} \right| = {\log _a}b - {\log _a}c\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Theo tính chất của lôgarit mệnh đề sai là \({\log _a}\left| {b - c} \right| = {\log _a}b - {\log _a}c\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[Q = {b^{ - \frac{4}{3}}}.\] 
B. \[Q = {b^{\frac{4}{3}}}.\]    
C. \[Q = {b^{\frac{5}{9}}}.\]   
D. \[Q = {b^2}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP