Câu hỏi:

24/12/2025 8 Lưu

Một con lắc lò xo dao động điều hoà theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động \(x = 4\cos \left( {\pi t - \frac{{2\pi }}{3}} \right) + 3\), trong đó \(t\) tính bằng giây và \(x\) tính bằng centimét. Tìm thời điểm mà vận tốc tức thời của con lắc bằng 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Vận tốc tức thời của con lắc là \(v(t) = x'(t) =  - 4\pi \,\sin \left( {\pi t - \frac{{2\pi }}{3}} \right)\) (m/s).

Khi vận tốc tức thời của con lắc bằng 0 thì

\(\begin{array}{l} - 4\pi \,\sin \left( {\pi t - \frac{{2\pi }}{3}} \right) = 0 \Leftrightarrow \pi t - \frac{{2\pi }}{3} = k\pi \,(k \in \mathbb{N})\\ \Leftrightarrow \pi t = \frac{{2\pi }}{3} + k\pi \,(k \in \mathbb{N}) \Leftrightarrow t = \frac{2}{3} + k\,(k \in \mathbb{N})\end{array}\)

Vậy khi \(t = \frac{2}{3} + k\,(k \in \mathbb{N})\)thì vận tốc con lắc bằng 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một cửa hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):  Số trung bình của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây? (ảnh 2)

Số trung bình \(\overline x  = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,AD = a căn bậc hai 2 . Cạnh bên SA  vuông góc (ABCD) và SA = 3a. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng  (ảnh 1)

Vì \(SA \bot \left( {ABCD} \right) \Rightarrow \) hình chiếu của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(AC\).

Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là \(\widehat {SCA}\).

Vì \(ABCD\) là hình chữ nhật nên \(AC = BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + 2{a^2}}  = a\sqrt 3 \).

Xét \(\Delta SAC\) vuông tại \(A\), có \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{3a}}{{a\sqrt 3 }} = \sqrt 3  \Rightarrow \widehat {SCA} = 60^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right).\) 
B. \(V = \frac{1}{6}Sh.\)
C. \(V = S'h.\) 
D. \(V = \frac{1}{3}h\left( {S + SS' + S'} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P = \sqrt x \).  
B. \(P = {x^{\frac{1}{8}}}\). 
C. \(P = {x^{\frac{2}{9}}}\). 
D. \(P = {x^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(2{x^3} + 5{x^2} - \frac{1}{{\sqrt {2x} }} + 2a\).
B. \(2{x^3} + 5{x^2} + \frac{1}{{2\sqrt {2x} }}\).
C. \(2{x^3} + 5{x^2} - \frac{1}{{\sqrt {2x} }}.\)  
D. \(2{x^3} + 5{x^2} - \sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP