Bác Trung có một tấm lưới dài 30 m. Bác muốn dùng tấm lưới này rào chắn 3 mặt áp lên bờ tường của khu vườn nhà mình thành một mảnh đất hình chữ nhật để nuôi gà. Hỏi hai cột góc hàng rào cần phải cắm cách bờ tường bao xa để mảnh đất được rào chắn của bác có diện tích không nhỏ hơn \(50\,\,{{\rm{m}}^{\rm{2}}}\).
Quảng cáo
Trả lời:
Gọi độ dài chiều rộng của mảnh đất nuôi gà hay khoảng cách cần phải cắm cọc tới bờ tường là \(x\) (m) (minh họa như hình vẽ). \(\left( {0 < x < 15} \right)\)

Độ dài của chiều dài mảnh đất nuôi gà là: \(30 - 2x\) (m)
Diện tích mảnh đất nuôi gà là: \(S\left( x \right) = x\left( {30 - 2x} \right) = - 2{x^2} + 30x\) (m2).
Để mảnh đất được rào chắn của bác có diện tích không nhỏ hơn \(50\,\,{{\rm{m}}^{\rm{2}}}\) thì:
\(S\left( x \right) = - 2{x^2} + 30x \ge 50 \Leftrightarrow - 2{x^2} + 30x - 50 \ge 0\) (*)
Xét tam thức bậc hai \(f\left( x \right) = - 2{x^2} + 30x - 50\) có \(a = - 2 < 0\)
\(\Delta ' = {15^2} - \left( { - 2} \right).\left( { - 50} \right) = 125\).
Do đó, \(f\left( x \right) = 0\) có hai nghiệm phân biệt:
\({x_1} = \frac{{ - 15 + \sqrt {125} }}{{\left( { - 2} \right)}} = \frac{{15 - 5\sqrt 5 }}{2} \approx 1,91\)
\({x_2} = \frac{{ - 15 + \sqrt {125} }}{{\left( { - 2} \right)}} = \frac{{15 + 5\sqrt 5 }}{2} \approx 13,09\)
Như vậy, bất phương trình (*) có tập nghiệm là đoạn \(\left[ {1,91;\,\,\,13,09} \right]\).
Vậy khoảng cách từ điểm cắm cọc đến bờ tường phải lớn hơn hoặc bằng 1,91 m và nhỏ hơn hoặc bằng 13,09 m thì mảnh đất được rào chắn của bác có diện tích không nhỏ hơn\(50\,\,{{\rm{m}}^{\rm{2}}}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Dựa vào bảng ta thấy, tại \(x = 1,5\) giá trị \(y\) tương ứng là 2. Do đó, giá trị hàm số tại \(x = 1,5\) là 2.
Câu 2
Lời giải
Đáp án đúng là: D
Điều kiện xác định của hàm số \(y = \sqrt {4 - 2x} \) là: \(4 - 2x \ge 0 \Leftrightarrow 2x \le 4 \Leftrightarrow x \le 2\).
Vậy, tập xác định của hàm số \(y = \sqrt {4 - 2x} \) là \(D = \left( { - \infty ;2} \right]\).
Câu 3
A. \(y = 6{x^2} - {x^3} + 20\);
B. \(y = {x^2} - 3x + 23\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) có vô số nghiệm;
B. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) vô nghiệm;
C. Hệ phương trình \(\left\{ \begin{array}{l}ax + by + c = 0\\mx + ny + p = 0\end{array} \right.\) có duy nhất một nghiệm;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[\cos \alpha = \frac{{\left| {am + bn} \right|}}{{\sqrt {{a^2} + {b^2}} .\sqrt {{m^2} + {n^2}} }}\];
B. \[\cos \alpha = \frac{{\left| {am - bn} \right|}}{{\sqrt {{a^2} + {b^2}} .\sqrt {{m^2} + {n^2}} }}\];
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.