Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
Quảng cáo
Trả lời:
Đáp án đúng là: D
Điều kiện: \(\left\{ \begin{array}{l}{x^2} + 4x > 0\\2x + 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x < - 4\\x > 0\end{array} \right.\\x > - \frac{3}{2}\end{array} \right. \Leftrightarrow x > 0\).
Ta có \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\)
\( \Leftrightarrow {\log _3}\left( {{x^2} + 4x} \right) + {\log _{{3^{ - 1}}}}\left( {2x + 3} \right) = 0\)
\( \Leftrightarrow {\log _3}\left( {{x^2} + 4x} \right) - {\log _3}\left( {2x + 3} \right) = 0\)
\( \Leftrightarrow {\log _3}\frac{{{x^2} + 4x}}{{2x + 3}} = 0\)\( \Leftrightarrow \frac{{{x^2} + 4x}}{{2x + 3}} = {3^0}\)
\( \Leftrightarrow \frac{{{x^2} + 4x}}{{2x + 3}} = 1\)\( \Rightarrow {x^2} + 4x = 2x + 3\)
\( \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 3\end{array} \right.\).
Kết hợp với điều kiện ta chọn \(x = 1\), vậy phương trình đã cho có 1 nghiệm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \(\left\{ \begin{array}{l}CD \bot SA\,\,\,\,\,\,\left( {{\rm{v\`i }}SA \bot \left( {ABCD} \right)} \right)\\CD \bot AD\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).
b) Gọi \(O = AC \cap BD.\)
Ta có \(\left\{ \begin{array}{l}CO \bot BD\\SO \bot BD\,\,\,\,\left( {{\rm{v\`i }}\,\,\,SB = SD\,} \right)\end{array} \right. \Rightarrow \left[ {S,\,\,BD,\,\,C} \right] = \widehat {SOC}\).
\(\Delta SOA\) vuông tại \(A:\) \(AO = \frac{{a\sqrt 2 }}{2} = SA \Rightarrow \)\(\widehat {SOA} = 45^\circ \Rightarrow \widehat {SOC} = 135^\circ \).
Vậy số đo của góc nhị diện \(\left[ {S,\,\,BD,\,\,C} \right]\) bằng \(135^\circ .\)
Lời giải

Gọi \(I\) là trung điểm của \(AD\) nên suy ra \(SI \bot \left( {ABCD} \right)\).
Kẻ \[Ax\parallel BD\].
Do đó \[d\left( {BD,SA} \right) = d\left( {BD,\left( {SAx} \right)} \right) = d\left( {B,\left( {SAx} \right)} \right) = 2d\left( {I,\left( {SAx} \right)} \right)\].
Kẻ \[IE \bot Ax\] tại \[E\], kẻ \[IK \bot SE\] tại \[K\]. Khi đó \[d\left( {I,\left( {SAx} \right)} \right) = IK\].
Gọi \[F\] là hình chiếu của \[I\] trên \[BD\], ta có: \[IE = IF = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{4}\].
Tam giác vuông \[SIE\], có: \[IK = \frac{{SI.IE}}{{\sqrt {S{I^2} + I{E^2}} }} = \frac{{a\sqrt {21} }}{{14}}\].
Vậy \[d\left( {BD,SA} \right) = 2IK = \frac{{a\sqrt {21} }}{7}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.