Câu hỏi:

24/12/2025 47 Lưu

Mệnh đề nào đúng trong các mệnh đề sau?

A. Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho.
B. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[b\] và mặt phẳng \[\left( P \right)\] khi \[a\]\[b\] song song (hoặc \[a\] trùng với \[b\]).
C. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[a\] và mặt phẳng \[\left( Q \right)\] thì mặt phẳng \[\left( P \right)\] song song với mặt phẳng \[\left( Q \right)\].
D. Góc giữa đường thẳng \[a\] và mặt phẳng \[\left( P \right)\] bằng góc giữa đường thẳng \[b\] và mặt phẳng \[\left( P \right)\] thì \[a\]\[b\] song song.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp \(S.ABCD\) có đáy \(ABCD (ảnh 1)

a) Ta có \(\left\{ \begin{array}{l}CD \bot SA\,\,\,\,\,\,\left( {{\rm{v\`i }}SA \bot \left( {ABCD} \right)} \right)\\CD \bot AD\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

b) Gọi \(O = AC \cap BD.\)

Ta có \(\left\{ \begin{array}{l}CO \bot BD\\SO \bot BD\,\,\,\,\left( {{\rm{v\`i }}\,\,\,SB = SD\,} \right)\end{array} \right. \Rightarrow \left[ {S,\,\,BD,\,\,C} \right] = \widehat {SOC}\).

\(\Delta SOA\) vuông tại \(A:\) \(AO = \frac{{a\sqrt 2 }}{2} = SA \Rightarrow \)\(\widehat {SOA} = 45^\circ \Rightarrow \widehat {SOC} = 135^\circ \).

Vậy số đo của góc nhị diện \(\left[ {S,\,\,BD,\,\,C} \right]\) bằng \(135^\circ .\)

Câu 2

A. \(0 < b < 1 < a\).                          
B. \(0 < a < b < 1\).                     
C. \(0 < b < a < 1\).
D. \(0 < a < 1 < b\).

Lời giải

Đáp án đúng là: A

Đồ thị \(\left( {{C_1}} \right)\) đi lên từ trái qua phải nên hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\), do đó \(a > 1\).

Đồ thị \(\left( {{C_2}} \right)\) đi xuống từ trái qua phải nên hàm số \(y = {b^x}\) nghịch biến trên \(\mathbb{R}\), do đó \(0 < b < 1\).

Vậy \(0 < b < 1 < a\).

Câu 3

A. \[{a^2}b\].          
B. \[a{b^2}\].          
C. \[{a^2}{b^2}\].                
D. \[ab\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({x^\alpha } \cdot {x^\beta } = {x^{\alpha + \beta }}\).                                 

B. \({x^\alpha } \cdot {y^\beta } = {\left( {xy} \right)^{\alpha + \beta }}\).        
C. \({\left( {{x^\alpha }} \right)^\beta } = {x^{\alpha \cdot \beta }}\).                                               
D. \({\left( {xy} \right)^\alpha } = {x^\alpha } \cdot {y^\alpha }\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{1}{2}\].   
B. \[4\].                    
C. \[ - 4\].   
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(V = \frac{{2{a^3}\sqrt 3 }}{7}\).    
B. \(V = \frac{{{a^3}\sqrt 3 }}{{13}}\).                       
C. \(V = \frac{{{a^3}\sqrt 3 }}{4}\).                             
D. \(V = \frac{{4{a^3}\sqrt 6 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP