Thể tích của khối chóp cụt đều có diện tích đáy lớn \(S\), diện tích đáy nhỏ \(S'\) và chiều cao \(h\) được tính theo công thức nào?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Thể tích của khối chóp cụt đều có diện tích đáy lớn \(S\), diện tích đáy nhỏ \(S'\) và chiều cao \(h\) được tính theo công thức \(V = \frac{1}{3} \cdot h \cdot \left( {S + S' + \sqrt {S \cdot S'} } \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có \(\left\{ \begin{array}{l}CD \bot SA\,\,\,\,\,\,\left( {{\rm{v\`i }}SA \bot \left( {ABCD} \right)} \right)\\CD \bot AD\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).
b) Gọi \(O = AC \cap BD.\)
Ta có \(\left\{ \begin{array}{l}CO \bot BD\\SO \bot BD\,\,\,\,\left( {{\rm{v\`i }}\,\,\,SB = SD\,} \right)\end{array} \right. \Rightarrow \left[ {S,\,\,BD,\,\,C} \right] = \widehat {SOC}\).
\(\Delta SOA\) vuông tại \(A:\) \(AO = \frac{{a\sqrt 2 }}{2} = SA \Rightarrow \)\(\widehat {SOA} = 45^\circ \Rightarrow \widehat {SOC} = 135^\circ \).
Vậy số đo của góc nhị diện \(\left[ {S,\,\,BD,\,\,C} \right]\) bằng \(135^\circ .\)
Lời giải

Gọi \(I\) là trung điểm của \(AD\) nên suy ra \(SI \bot \left( {ABCD} \right)\).
Kẻ \[Ax\parallel BD\].
Do đó \[d\left( {BD,SA} \right) = d\left( {BD,\left( {SAx} \right)} \right) = d\left( {B,\left( {SAx} \right)} \right) = 2d\left( {I,\left( {SAx} \right)} \right)\].
Kẻ \[IE \bot Ax\] tại \[E\], kẻ \[IK \bot SE\] tại \[K\]. Khi đó \[d\left( {I,\left( {SAx} \right)} \right) = IK\].
Gọi \[F\] là hình chiếu của \[I\] trên \[BD\], ta có: \[IE = IF = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{4}\].
Tam giác vuông \[SIE\], có: \[IK = \frac{{SI.IE}}{{\sqrt {S{I^2} + I{E^2}} }} = \frac{{a\sqrt {21} }}{{14}}\].
Vậy \[d\left( {BD,SA} \right) = 2IK = \frac{{a\sqrt {21} }}{7}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.