Câu hỏi:

25/12/2025 5 Lưu

Trong lăng trụ đều, khẳng định nào sau đây sai?

A. Đáy là đa giác đều.
B. Các mặt bên là những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy.
C. Các cạnh bên là những đường cao.
D. Các mặt bên là những hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Lăng trụ đều là lăng trụ đứng có đáy là đa giác đều, do đó nó có các cạnh bên là những đường cao, các mặt bên là những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy, vậy đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \({4^x} - {2^{x + 2}} + 3 = 0\)\( \Leftrightarrow {\left( {{2^x}} \right)^2} - 4 \cdot {2^x} + 3 = 0\).

Đặt \(t = {2^x},t > 0\). Phương trình trở thành \({t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = {\log _2}3\end{array} \right.\).

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {0;\,\,{{\log }_2}3} \right\}\).

b) Điều kiện xác định: \[5 - {2^x} > 0 \Leftrightarrow x < {\log _2}5\].

Ta có \({\log _2}\left( {5 - {2^x}} \right) = 2 - x \Leftrightarrow 5 - {2^x} = {2^{2 - x}} \Leftrightarrow 5 - {2^x} = \frac{4}{{{2^x}}}\,\,\,\,\,\,\,\,\,(1)\).

Đặt \[t = {2^x}\] (\[t > 0\]).

Khi đó phương trình \((1)\) trở thành \(5 - t = \frac{4}{t} \Leftrightarrow {t^2} - 5t + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 4\end{array} \right.\).

+) Với \[t = 1\] ta có \[{2^x} = 1 \Leftrightarrow x = 0\].

+) Với \[t = 4\] ta có \[{2^x} = 4 \Leftrightarrow x = 2\].

Do vậy phương trình đã cho có hai nghiệm thực \({x_1} = 0\)\({x_2} = 2\).

Khi đó \(P = {x_1} + {x_2} + {x_1} \cdot {x_2} = 0 + 2 + 0 \cdot 2 = 2\).

Lời giải

a)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 1)

 

Ta có \(SA \bot \left( {ABCD} \right)\) nên \[BD \bot SA\], lại có \(ABCD\) là hình vuông nên \[BD \bot AC\].

Từ đó suuy ra \[BD \bot \left( {SAC} \right)\].

Ta chứng minh được \[IK\] là đường trung bình của tam giác \[BCD\] nên \[IK{\rm{//}}BD\].

Do đó, \[IK \bot \left( {SAC} \right)\].

b)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 2)

 

Ta có \[\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\], \[AO \bot BD\], \[BD \bot SA \Rightarrow SO \bot BD\].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\]\[\widehat {AOS}\] .

Ta có \(AC = 2a\sqrt 2 \Rightarrow AO = \frac{{AC}}{2} = a\sqrt 2 \).

Vì tam giác \[SAO\] vuông tại \[A\] \[ \Rightarrow \tan \widehat {AOS} = \frac{{SA}}{{AO}} = 1 \Rightarrow \widehat {AOS} = 45^\circ \].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\] bằng \[45^\circ \].

Câu 4

A. \(AD\).                
B. \(AB\).                
C. \(SC\).                              
D. \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{a\sqrt {14} }}{2}\).               
B. \(\frac{{a\sqrt {14} }}{4}\).                     
C. \(\frac{{a\sqrt 7 }}{2}\).                             
D. \(\frac{{a\sqrt 7 }}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 9\).                
B. \(9\).                    
C. \( - 10\). 
D. \(10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP