Câu hỏi:

25/12/2025 154 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật \(ABCD\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy (tham khảo hình vẽ). Khoảng cách từ điểm \(S\) đến mặt phẳng đáy là đoạn nào trong các đoạn thẳng sau:

Đáp án đúng là: C (ảnh 1)

A. \(SA\).                 
B. \(SB\).                 
C. \(SC\).                              
D. \(SD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có \(SA \bot \left( {ABCD} \right)\), do đó \(d\left( {S,\,\left( {ABCD} \right)} \right) = SA\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 1)

 

Ta có \(SA \bot \left( {ABCD} \right)\) nên \[BD \bot SA\], lại có \(ABCD\) là hình vuông nên \[BD \bot AC\].

Từ đó suuy ra \[BD \bot \left( {SAC} \right)\].

Ta chứng minh được \[IK\] là đường trung bình của tam giác \[BCD\] nên \[IK{\rm{//}}BD\].

Do đó, \[IK \bot \left( {SAC} \right)\].

b)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 2)

 

Ta có \[\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\], \[AO \bot BD\], \[BD \bot SA \Rightarrow SO \bot BD\].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\]\[\widehat {AOS}\] .

Ta có \(AC = 2a\sqrt 2 \Rightarrow AO = \frac{{AC}}{2} = a\sqrt 2 \).

Vì tam giác \[SAO\] vuông tại \[A\] \[ \Rightarrow \tan \widehat {AOS} = \frac{{SA}}{{AO}} = 1 \Rightarrow \widehat {AOS} = 45^\circ \].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\] bằng \[45^\circ \].

Lời giải

Đáp án đúng là: C

Đáp án đúng là: D (ảnh 1)

Ta có \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AB\)\(SA \bot AC\). Do đó, \(\widehat {BAC}\) là một góc phẳng của góc nhị diện \(\left[ {B,SA,C} \right]\).

Tam giác \(ABC\)\(AB = BC = AC = a\) nên \(ABC\) là tam giác đều, suy ra \(\widehat {BAC} = 60^\circ \).

Vậy số đo góc nhị diện \(\left[ {B,SA,C} \right]\) bằng \(60^\circ .\)

Câu 3

A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{2a}}{{1 + b}}\).                     
B. \(\frac{{1 + b}}{{2a}}\) .                    
C. \(\frac{b}{{2a}}\) .       
D. \(\frac{{1 - b}}{{2a}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(AD\).                
B. \(AB\).                
C. \(SC\).                              
D. \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP