Câu hỏi:

25/12/2025 6 Lưu

Cho hình chóp cụt đều. Khẳng định nào sau đây sai?        

A. Các cạnh bên đồng quy tại một điểm.         
B. Hai mặt đáy luôn song song nhau.        
C. Các cạnh bên bằng nhau.                            
D. Hai mặt đáy là các đa giác đều bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Cho hình chóp cụt đều. Khẳng định nào sau đây sai? 	A. Các cạnh bên đồng quy tại một điểm.	 	B. Hai mặt đáy luôn song song nhau. 	C. Các cạnh bên bằng nhau.	 	D. Hai mặt đáy là các đa giác đều bằng nhau. (ảnh 1)

Hình chóp cụt đều có:

+ Các cạnh bên đồng quy tại một điểm.

+ Hai mặt đáy nằm trên hai mặt phẳng song song.

+ Các cạnh bên bằng nhau.

+ Hai mặt đáy là các đa giác đều có đáy lớn và đáy nhỏ.

Vậy đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \({4^x} - {2^{x + 2}} + 3 = 0\)\( \Leftrightarrow {\left( {{2^x}} \right)^2} - 4 \cdot {2^x} + 3 = 0\).

Đặt \(t = {2^x},t > 0\). Phương trình trở thành \({t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 3\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x = {\log _2}3\end{array} \right.\).

Vậy phương trình đã cho có tập nghiệm là \(S = \left\{ {0;\,\,{{\log }_2}3} \right\}\).

b) Điều kiện xác định: \[5 - {2^x} > 0 \Leftrightarrow x < {\log _2}5\].

Ta có \({\log _2}\left( {5 - {2^x}} \right) = 2 - x \Leftrightarrow 5 - {2^x} = {2^{2 - x}} \Leftrightarrow 5 - {2^x} = \frac{4}{{{2^x}}}\,\,\,\,\,\,\,\,\,(1)\).

Đặt \[t = {2^x}\] (\[t > 0\]).

Khi đó phương trình \((1)\) trở thành \(5 - t = \frac{4}{t} \Leftrightarrow {t^2} - 5t + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 4\end{array} \right.\).

+) Với \[t = 1\] ta có \[{2^x} = 1 \Leftrightarrow x = 0\].

+) Với \[t = 4\] ta có \[{2^x} = 4 \Leftrightarrow x = 2\].

Do vậy phương trình đã cho có hai nghiệm thực \({x_1} = 0\)\({x_2} = 2\).

Khi đó \(P = {x_1} + {x_2} + {x_1} \cdot {x_2} = 0 + 2 + 0 \cdot 2 = 2\).

Lời giải

a)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 1)

 

Ta có \(SA \bot \left( {ABCD} \right)\) nên \[BD \bot SA\], lại có \(ABCD\) là hình vuông nên \[BD \bot AC\].

Từ đó suuy ra \[BD \bot \left( {SAC} \right)\].

Ta chứng minh được \[IK\] là đường trung bình của tam giác \[BCD\] nên \[IK{\rm{//}}BD\].

Do đó, \[IK \bot \left( {SAC} \right)\].

b)

Cho hình chóp \[S.ABCD\] có đáy là hình vuông cạnh \(2a\), \[ (ảnh 2)

 

Ta có \[\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\], \[AO \bot BD\], \[BD \bot SA \Rightarrow SO \bot BD\].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\]\[\widehat {AOS}\] .

Ta có \(AC = 2a\sqrt 2 \Rightarrow AO = \frac{{AC}}{2} = a\sqrt 2 \).

Vì tam giác \[SAO\] vuông tại \[A\] \[ \Rightarrow \tan \widehat {AOS} = \frac{{SA}}{{AO}} = 1 \Rightarrow \widehat {AOS} = 45^\circ \].

Vậy góc giữa 2 mặt phẳng \[\left( {SBD} \right)\]\[\left( {ABCD} \right)\] bằng \[45^\circ \].

Câu 4

A. \(AD\).                
B. \(AB\).                
C. \(SC\).                              
D. \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{a\sqrt {14} }}{2}\).               
B. \(\frac{{a\sqrt {14} }}{4}\).                     
C. \(\frac{{a\sqrt 7 }}{2}\).                             
D. \(\frac{{a\sqrt 7 }}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - 9\).                
B. \(9\).                    
C. \( - 10\). 
D. \(10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP