Cho số thực \(x\) dương. Với mọi số thực \(a\), \(b\) bất kỳ, khẳng định nào dưới đây đúng?
Cho số thực \(x\) dương. Với mọi số thực \(a\), \(b\) bất kỳ, khẳng định nào dưới đây đúng?
A. \({\left( {{x^a}} \right)^b} = {x^{ab}}\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Theo tính chất của lũy thừa ta có \({\left( {{x^a}} \right)^b} = {x^{ab}}\) với mọi \(x\), \(a\), \(b\) dương.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \({M_o} = \frac{{70}}{3}\).
Lời giải
Đáp án đúng là: A
Tần số lớn nhất là 7 nên nhóm chứa mốt là \(\left[ {20;30} \right)\).
Ta có: \(u = 20\), \({n_3} = 7\), \({n_2} = 6,\,\,{n_4} = 5\), \(g = 10\).
Do đó, \({M_o} = 20 + \frac{{7 - 6}}{{2 \cdot 7 - 6 - 5}} \cdot 10 = \frac{{70}}{3}\).
Câu 2
Lời giải
Đáp án đúng là: B
Không gian mẫu \(\Omega = \left\{ {1;\,\,2;\,\,3;\, \ldots ;\,\,12} \right\}\). Suy ra \(n\left( \Omega \right) = 12\).
Ta có \(A = \left\{ {3;\,\,6;\,\,9;\,\,12} \right\}\), \(B = \left\{ {5;\,\,10} \right\}\).
Suy ra \(A \cup B = \left\{ {3;\,\,5;\,\,6;\,\,9;\,\,10;\,\,12} \right\}\). Do đó, \(n\left( {A \cup B} \right) = 6\).
Vậy \(P\left( {A \cup B} \right) = \frac{{n\left( {A \cup B} \right)}}{{n\left( \Omega \right)}} = \frac{6}{{12}} = \frac{1}{2}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

