Câu hỏi:

25/12/2025 17 Lưu

Trong không gian cho đường thẳng \(\Delta \) không nằm trong mp \(\left( P \right)\), đường thẳng \(\Delta \) được gọi là vuông góc với mp \(\left( P \right)\) nếu

A. vuông góc với hai đường thẳng phân biệt nằm trong mp \(\left( P \right).\)
B. vuông góc với đường thẳng \(a\)\[a\] song song với mp \(\left( P \right)\).
C. vuông góc với đường thẳng \(a\) nằm trong mp \(\left( P \right).\)
D. vuông góc với mọi đường thẳng nằm trong mp \(\left( P \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đường thẳng \(\Delta \) được gọi là vuông góc với mặt phẳng \(\left( P \right)\) nếu \(\Delta \) vuông góc với mọi đường thẳng trong mặt phẳng \(\left( P \right)\) (ĐN đường thẳng vuông góc với mặt phẳng).

Vậy đáp án D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({M_o} = \frac{{70}}{3}\).                       

B. \({M_o} = \frac{{50}}{3}\).              
C. \({M_o} = \frac{{70}}{2}\).              
D. \({M_o} = \frac{{80}}{3}\).

Lời giải

Đáp án đúng là: A

Tần số lớn nhất là 7 nên nhóm chứa mốt là \(\left[ {20;30} \right)\).

Ta có: \(u = 20\), \({n_3} = 7\), \({n_2} = 6,\,\,{n_4} = 5\), \(g = 10\).

Do đó, \({M_o} = 20 + \frac{{7 - 6}}{{2 \cdot 7 - 6 - 5}} \cdot 10 = \frac{{70}}{3}\).

Lời giải

Cho hình chóp \(S.ABCD\) có (ảnh 1)

a) Ta có \(\left. \begin{array}{l}BC \bot AB\\BC \bot SA{\rm{ }}\left( {do{\rm{ SA}} \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\).

\(\left. \begin{array}{l}BC \bot \left( {SAB} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow BC \bot SB\).

b) Kẻ \(AM \bot BD\,\,\,\left( {M \in BD} \right)\).

Khi đó, \(BD \bot \left( {SAM} \right)\) (do \(\left\{ \begin{array}{l}BD \bot SA\\BD \bot AM\end{array} \right.\)).

Suy ra \(BD \bot SM\). Khi đó \(\widehat {SMA}\) là một góc phẳng của góc nhị diện \(\left[ {A,BD,S} \right]\).

Ta có \(AM = \frac{{AB \cdot AD}}{{BD}} = \frac{{a\sqrt 3 }}{2}\), \(\tan \widehat {SMA} = \frac{{SA}}{{AM}} = \frac{{2a}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{{4\sqrt 3 }}{3}\).

Vậy tan của góc nhị diện \(\left[ {A,BD,S} \right]\) bằng \(\frac{{4\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\left( {1; + \infty } \right)\].            
B. \[\left( { - \infty ;\frac{1}{2}} \right)\].                          
C. \[\left( {\frac{1}{2}; + \infty } \right)\].                    
D. \[\left[ {\frac{1}{2}; + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{3}{4}\).   
B. \(3\).                    
C. \(\frac{3}{2}\).                
D. \(\frac{1}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[P = a\].             
B. \[P = {a^3}\].      
C. \[P = {a^4}\].                            
D. \[P = {a^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP