Câu hỏi:

25/12/2025 10 Lưu

Với giá trị nào của \(m\) thì hai đường thẳng \({d_1}:2x - 3y + 19 = 0\) và \({d_2}:\left\{ \begin{array}{l}x = 2 - 3t\\y = 4 - 4mt\end{array} \right.\) vuông góc với nhau?

A. \(m =  - \frac{9}{8}\);                                  
B. \(m = \frac{9}{8}\);         
C. \(m = \frac{1}{2}\);             
D. \(m =  - \frac{5}{4}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Đường thẳng \({d_1}:2x - 3y + 19 = 0\) có một vectơ pháp tuyến  là \(\overrightarrow {{n_1}}  = \left( {2;\, - 3} \right)\).

Đường thẳng \({d_2}:\left\{ \begin{array}{l}x = 2 - 3t\\y = 4 - 4mt\end{array} \right.\) chỉ phương là \(\overrightarrow {{u_2}}  = \left( { - 3;\,\, - 4m} \right)\), nên nó có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {4m;\,\, - 3} \right)\).

Hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau khi và chỉ khi \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0\)

\( \Leftrightarrow 2.4m + \left( { - 3} \right).\left( { - 3} \right) = 0 \Leftrightarrow 8m + 9 = 0 \Leftrightarrow m =  - \frac{9}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một chiếc thuyền đang neo đậu tại vị trí A cách bờ biển một khoảng cách AB = 300 m. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng là 1 400 m (ảnh 2)

Đổi: 300 m = 0,3 km; 1 400 m = 1,4 km; 20 phút = \(\frac{1}{3}\) giờ.

Đặt \(BM = x\) (km, \(x > 0\)).

Áp dụng định lí Pythagore trong tam giác vuông \(ABM\), ta suy ra \(AM = \sqrt {{{0,3}^2} + {x^2}} \) (km).

Thời gian người đó chèo thuyền từ \(A\) đến \(M\) là \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3}\) (giờ).

Ta có: \(BM + MC = BC \Rightarrow MC = BC - BM = 1,4 - x\) (km).

Thời gian người đó đi bộ từ \(M\) đến \(C\) là \(\frac{{1,4 - x}}{6}\) (giờ).

Khi đó ta có: \(\frac{{\sqrt {{{0,3}^2} + {x^2}} }}{3} + \frac{{1,4 - x}}{6} = \frac{1}{3}\)\( \Leftrightarrow 2\sqrt {0,09 + {x^2}}  = x + 0,6\).

Giải phương trình trên ta suy ra được \(x = 0,4\) là giá trị thỏa mãn \(x > 0\).

Vậy \(BM = 0,4\) km = 400 m.

Câu 2

A. 5;                          
B. 6;                              
C. 7;                           
D. 8.

Lời giải

Đáp án đúng là: B

Xét tam thức \(f\left( x \right) = 2{x^2} - 3x - 15\) có hai nghiệm là \({x_1} = \frac{{3 - \sqrt {129} }}{4}\), \({x_2} = \frac{{3 + \sqrt {129} }}{4}\).

Mặt khác có hệ số \(a = 2 > 0\), do đó ta có bảng xét dấu sau:

\(x\)

\( - \infty \)                \(\frac{{3 - \sqrt {129} }}{4}\)              \(\frac{{3 + \sqrt {129} }}{4}\)                 \( + \infty \)

\(f\left( x \right)\)

           +             0            –           0           +

 Dựa vào bảng xét dấu, ta thấy \(f\left( x \right) = 2{x^2} - 3x - 15 \le 0\)\( \Leftrightarrow x \in \left[ {\frac{{3 - \sqrt {129} }}{4};\,\,\frac{{3 + \sqrt {129} }}{4}} \right]\).

Do đó, bất phương trình đã cho có 6 nghiệm nguyên là – 2; – 1; 0; 1; 2; 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Phương trình vô nghiệm;                            

B. Phương trình có một nghiệm;   

C. Tổng các nghiệm của phương trình là – 1;     
D. Phương trình có hai nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(R = 9\);               
B. \(R = 2\);                   
C. \(R = 4\);               
D. \(R = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({\left( {x + 8} \right)^2} + {\left( {y - 2} \right)^2} = 49\);         

B. \({\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = 49\);   

C. \({\left( {x + 8} \right)^2} + {\left( {y - 2} \right)^2} = 7\);             
D. \({\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = 7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau:

Cho đồ thị hàm số \(y = f\left( x \right)\) như hình vẽ sau: (ảnh 1)

Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng

A. \(\left( {0;\,\,1} \right)\);                              
B. \(\left( {1;\,\,3} \right)\);  
C. \(\left( {3;\,\,5} \right)\);                     
D. \(\left( {0;\,\,5} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP