Câu hỏi:

25/12/2025 16 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot \left( {ABCD} \right)\)\(SA = a\) (như hình vẽ dưới).

Đáp án đúng là: C (ảnh 1)

Góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABCD} \right)\) bằng

A. \(90^\circ .\)       
B. \(45^\circ .\)       
C. \(60^\circ .\)     
D. \(30^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

\(SA \bot \left( {ABCD} \right)\) nên \(AB\) là hình chiếu của \(SB\) trên mặt phẳng \(\left( {ABCD} \right)\).

Do đó, \(\left( {SB,\,\,\left( {ABCD} \right)} \right) = \left( {SB,\,AB} \right)\).

Tam giác \(SAB\) vuông tại \(A\)\(AB = SA = a\) nên tam giác \(SAB\) vuông cân tại \(A\).

Suy ra \(\widehat {SBA} = 45^\circ \).

Vậy \(\left( {SB,\,\,\left( {ABCD} \right)} \right) = \left( {SB,\,AB} \right) = \widehat {SBA} = 45^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

Lời giải

a) Chứng minh \(BC \bot \left( {SAB} \right)\). (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).

Từ đó suy ra \(BC \bot \left( {SAB} \right)\).

Câu 3

A. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[O\].
B. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[A\].
C. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[B\].
D. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat {SAC}\).                           
B. \(\widehat {SOC}\).                          
C. \(\widehat {CSA}\).                          
D. \(\widehat {ACS}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {ABCD} \right)\).                   
B. \(\left( {SAB} \right)\).                          
C. \(\left( {SAD} \right)\).                          
D. \(\left( {SAC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Góc giữa hai đường thẳng \(a\)\(b\) có số đo từ 0° đến 180°.
B. Góc giữa hai đường thẳng \(a\)\(b\) bằng 0° khi đường thẳng \(a\) song song hoặc trùng với đường thẳng \(b\).
C. Góc giữa hai đường thẳng song song bằng 180°.
D. Góc giữa hai đường thẳng luôn luôn là góc nhọn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP