Câu hỏi:

25/12/2025 15 Lưu

(1,0 điểm) Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\)\(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: “Chuyến bay của hãng X khởi hành đúng giờ”, ta có \(P\left( A \right) = 0,92\).

Gọi \(B\) là biến cố: “Chuyến bay của hãng Y khởi hành đúng giờ”, ta có \(P\left( B \right) = 0,98\).

Từ giả thiết ta có \(A\)\(B\) là hai biến cố độc lập.

Do đó, \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,92 \cdot 0,98 = 0,9016\).

Gọi \(M\) là biến cố: “Chỉ có một chuyến bay khởi hành đúng giờ”.

Ta có \(M = A\overline B \cup \overline A B\), do đó \(P\left( M \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right)\).

\(P\left( {A\overline B } \right) = 0,92 \cdot 0,02 = 0,0184\), \(P\left( {\overline A B} \right) = 0,08 \cdot 0,98 = 0,0784\).

Vậy \(P\left( M \right) = 0,0184 + 0,0784 = 0,0968\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)

                \( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)

Lời giải

a) Chứng minh \(BC \bot \left( {SAB} \right)\). (ảnh 1)

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).

Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).

Từ đó suy ra \(BC \bot \left( {SAB} \right)\).

Câu 3

A. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[O\].
B. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[A\].
C. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[B\].
D. Hình chiếu của \[S\] trên mặt phẳng \[\left( {ABCD} \right)\] là điểm \[C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {ABCD} \right)\).                   
B. \(\left( {SAB} \right)\).                          
C. \(\left( {SAD} \right)\).                          
D. \(\left( {SAC} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {SAC}\).                           
B. \(\widehat {SOC}\).                          
C. \(\widehat {CSA}\).                          
D. \(\widehat {ACS}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số nghịch biến trên \[\mathbb{R}\].
B. Hàm số đồng biến trên \[\mathbb{R}\].
C. Hàm số nghịch biến trên \(\left( {0; + \infty } \right).\)
D. Hàm số đồng biến trên \(\left( {0; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Góc giữa hai đường thẳng \(a\)\(b\) có số đo từ 0° đến 180°.
B. Góc giữa hai đường thẳng \(a\)\(b\) bằng 0° khi đường thẳng \(a\) song song hoặc trùng với đường thẳng \(b\).
C. Góc giữa hai đường thẳng song song bằng 180°.
D. Góc giữa hai đường thẳng luôn luôn là góc nhọn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP