(1,0 điểm) Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\) và \(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ.
(1,0 điểm) Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\) và \(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố: “Chuyến bay của hãng X khởi hành đúng giờ”, ta có \(P\left( A \right) = 0,92\).
Gọi \(B\) là biến cố: “Chuyến bay của hãng Y khởi hành đúng giờ”, ta có \(P\left( B \right) = 0,98\).
Từ giả thiết ta có \(A\) và \(B\) là hai biến cố độc lập.
Do đó, \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,92 \cdot 0,98 = 0,9016\).
Gọi \(M\) là biến cố: “Chỉ có một chuyến bay khởi hành đúng giờ”.
Ta có \(M = A\overline B \cup \overline A B\), do đó \(P\left( M \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right)\).
Mà \(P\left( {A\overline B } \right) = 0,92 \cdot 0,02 = 0,0184\), \(P\left( {\overline A B} \right) = 0,08 \cdot 0,98 = 0,0784\).
Vậy \(P\left( M \right) = 0,0184 + 0,0784 = 0,0968\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có bảng sau:
|
Doanh thu |
\(\left[ {5;7} \right)\) |
\(\left[ {7;9} \right)\) |
\(\left[ {9;11} \right)\) |
\(\left[ {11;13} \right)\) |
\(\left[ {13;15} \right)\) |
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Số trung bình của mẫu số liệu là \(\overline x = \frac{{2.6 + 7.8 + 7.10 + 3.12 + 1.14}}{{20}} = 9,4.\)
Lời giải
Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)
\( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
