(1,0 điểm) Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\) và \(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ.
(1,0 điểm) Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là \(0,92\) và \(0,98\). Tính xác suất để chỉ có duy nhất một trong hai chuyến bay khởi hành đúng giờ.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố: “Chuyến bay của hãng X khởi hành đúng giờ”, ta có \(P\left( A \right) = 0,92\).
Gọi \(B\) là biến cố: “Chuyến bay của hãng Y khởi hành đúng giờ”, ta có \(P\left( B \right) = 0,98\).
Từ giả thiết ta có \(A\) và \(B\) là hai biến cố độc lập.
Do đó, \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,92 \cdot 0,98 = 0,9016\).
Gọi \(M\) là biến cố: “Chỉ có một chuyến bay khởi hành đúng giờ”.
Ta có \(M = A\overline B \cup \overline A B\), do đó \(P\left( M \right) = P\left( {A\overline B } \right) + P\left( {\overline A B} \right)\).
Mà \(P\left( {A\overline B } \right) = 0,92 \cdot 0,02 = 0,0184\), \(P\left( {\overline A B} \right) = 0,08 \cdot 0,98 = 0,0784\).
Vậy \(P\left( M \right) = 0,0184 + 0,0784 = 0,0968\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(P = \frac{{{6^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{{\left( {2 \cdot 3} \right)}^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}} = \frac{{{2^{3 + \sqrt 5 }} \cdot {3^{3 + \sqrt 5 }}}}{{{2^{2 + \sqrt 5 }} \cdot {3^{1 + \sqrt 5 }}}}\)
\( = {2^{\left( {3 + \sqrt 5 } \right) - \left( {2 + \sqrt 5 } \right)}} \cdot {3^{\left( {3 + \sqrt 5 } \right) - \left( {1 + \sqrt 5 } \right)}} = {2^1} \cdot {3^2} = 18.\)
Lời giải

a) Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BC\).
Lại có \(BC \bot AB\) (do tam giác \(ABC\) vuông tại \(B\)).
Từ đó suy ra \(BC \bot \left( {SAB} \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

