Câu hỏi:

26/12/2025 6 Lưu

Bảng thống kê sau cho biết tốc độ (km/h) của một số xe máy khi đi qua vị trí có cảnh sát giao thông đang làm nhiệm vụ.

Tốc độ

\(\left[ {20;35} \right]\)

\(\left( {35;50} \right]\)

\(\left( {50;60} \right]\)

\(\left( {60;70} \right]\)

\(\left( {70;85} \right]\)

\(\left( {85;100} \right]\)

Số phương tiện giao thông

27

70

8

3

1

1

Quan sát mẫu số liệu trên và cho biết mệnh đề nào sau đây là đúng?

A. Số xe được đo tốc độ là 100 xe.
B. Mẫu số liệu đã cho gồm 5 nhóm có độ dài bằng nhau.
C. Tổng độ dài các nhóm là 80.
D. Số xe máy thuộc nhóm \(\left[ {60;70} \right)\) là ít nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Quan sát mẫu số liệu đã cho, ta thấy:

Số xe được đo tốc độ xe là: 27 + 70 + 8 + 3 + 1 + 1 = 110 (xe) nên đáp án A sai.

Mẫu số liệu đã cho gồm có 6 nhóm nên đáp án B sai.

Tổng độ dài của các nhóm 100 – 20 = 80 nên đáp án C đúng.

Số xe máy thuộc nhóm \(\left[ {60;70} \right)\) không phải là ít nhất nên đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Ta có

\[P = {\log _{ab}}x = \frac{1}{{{{\log }_x}ab}} = \frac{1}{{{{\log }_x}a + {{\log }_x}b}} = \frac{1}{{\frac{1}{{{{\log }_a}x}} + \frac{1}{{{{\log }_b}x}}}} = \frac{{{{\log }_a}x.{{\log }_b}x}}{{{{\log }_a}x + {{\log }_b}x}} = \frac{{4.6}}{{4 + 6}} = \frac{{12}}{5}\]

Vậy \(P = \frac{{12}}{5} = 2,4\).

2. Tính từ năm 2013 đến 2024, anh Toàn đã được 3 lần tăng lương.

Lương của anh Toàn sau lần tăng đầu tiên là:

\({L_1} = 6 \cdot 1,25\) (triệu đồng).

Lương của anh Toàn sau lần tăng thứ 2 là:

\({L_2} = {L_1} + 25\% {L_1} = {L_1} \cdot 1,25 = 6 \cdot 1,{25^2}\) (triệu đồng).

Lương của anh Toàn sau lần tăng thứ 3 là:

\({L_3} = {L_2} + 25\% {L_2} = {L_2} \cdot 1,25 = 6 \cdot 1,{25^3} \approx 11,7\) (triệu đồng).

Vậy lương của anh Toàn hiện đang hưởng là \(11,7\) triệu mỗi tháng.

Lời giải

Cho hình chóp \(S.ABC\) có \(SA \bot \lef (ảnh 1)

a) Ta có \(\left\{ \begin{array}{l}BC \bot AK\\BC \bot SA\end{array} \right. \Rightarrow BC \bot AH\).

b) Ta có \(AH \bot SK\)\(BC \bot AH\) nên \(AH \bot \left( {SBC} \right)\).

c) Vì \(AH \bot \left( {SBC} \right)\) nên \(SK\) là hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBC} \right)\).

Đặt \(\alpha = \left( {SA,\,\left( {SBC} \right)} \right) = \left( {SA,SK} \right) = \widehat {ASK}\).

Ta có \(AK = \frac{{AB \cdot AC}}{{BC}} = \frac{{AB \cdot AC}}{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

Khi đó \(\tan \alpha = \frac{{AK}}{{AS}} = \frac{{\frac{{2a\sqrt 5 }}{5}}}{{a\sqrt 5 }} = \frac{2}{5}\).

Câu 3

A. \(\sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}}\).       
B. \(\sqrt[n]{{{a^m}}} = {a^{\frac{n}{m}}}\).       
C. \(\sqrt[n]{{{a^m}}} = {a^{m \cdot n}}\).                      
D. \(\sqrt[n]{{{a^m}}} = {a^{m - n}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({x^m} \cdot {x^n} = {x^{m + n}}\).                                                                
B. \({\left( {x \cdot y} \right)^n} = {x^n} \cdot {y^n}\).            
C. \({\left( {{x^n}} \right)^m} = {x^{nm}}\).                                                     
D. \({x^m} \cdot {y^n} = {\left( {xy} \right)^{m + n}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP