Câu hỏi:

26/12/2025 32 Lưu

Cho tứ diện \[OABC\]\[3\] cạnh \[OA\], \[OB\], \[OC\] đôi một vuông góc. Gọi \[H\] là chân đường vuông góc hạ từ \[O\] tới \[\left( {ABC} \right)\] thì: 

A. \[H\] là trọng tâm tam giác \[ABC\].          
B. \[H\] là tâm đường tròn ngoại tiếp tam giác \[ABC\].        
C. \[H\] là tâm đường tròn nội tiếp tam giác \[ABC\].                                  
D. \[H\] là trực tâm tam giác \[ABC\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Đáp án đúng là: C (ảnh 1)

Ta có \(\left\{ \begin{array}{c}OA \bot OB\\OA \bot OC\end{array} \right. \Rightarrow OA \bot \left( {OBC} \right) \Rightarrow OA \bot BC\). (1)

Lại có \[H\] là chân đường vuông góc hạ từ \[O\] tới \[\left( {ABC} \right)\] nên \(OH \bot \left( {ABC} \right)\).

Suy ra \(OH \bot BC\). (2)

Từ (1) và (2) suy ra \(BC \bot \left( {OAH} \right)\). Do đó, \(BC \bot AH\).

Chứng minh tương tự, ta cũng có \(BH \bot AC\)\(CH \bot AB\).

Từ đó suy ra \[H\] là trực tâm tam giác \[ABC\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(A'D\).               
B. \(AC\).                
C. \(BB'\).                            
D. \(AD'\).

Lời giải

Đáp án đúng là: D

Cho hình lập phương \(ABCD.A'B'C'D'\). Đường thẳng nào sau đây vuông góc với đường thẳng \(BC'\)?  (ảnh 1)

Ta có \(A'D\,{\rm{//}}\,B'C,\,\,B'C \bot BC' \Rightarrow A'D \bot BC'\).

Câu 2

A. \(0 < c < 1 < a < b.\)                           
B. \(c < 0 < a < 1 < b.\)                                                        
C. \(c < 0 < a < b < 1.\)                         
D. \(0 < c < a < b < 1.\)

Lời giải

Đáp án đúng là: B

Ta thấy đồ thị \(y = {x^c}\) đi xuống từ trái qua phải nên \(c < 0\), đồ thị \(y = {a^x}\) đi xuống từ trái qua phải nên \(0 < a < 1\), đồ thị \(y = {\log _b}x\) đi lên từ trái qua phải nên \(b > 1.\)

Vậy \(c < 0 < a < 1 < b.\)

Câu 3

A. \(4\).                    
B. \(\frac{1}{4}\).   
C. \( - \frac{1}{4}\).                   
D. \( - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(AC \bot \left( {SAB} \right)\).        
B. \(SC \bot \left( {SAB} \right)\).              
C. \(AD \bot \left( {SAB} \right)\).                          
D. \(BD \bot \left( {SAB} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(1 + {\log _4}a\).                               
B. \(1 - {\log _4}a\).                              
C. \({\log _4}a\).     
D. \(4{\log _4}a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP