Cho hai hàm số \(y = {\log _a}x\), \(y = {\log _b}x\) với \(a\), \(b\) là hai số thực dương, khác \[1\] có đồ thị lần lượt là \(\left( {{C_1}} \right)\), \(\left( {{C_2}} \right)\) như hình vẽ. Khẳng định nào sau đây là sai?

Quảng cáo
Trả lời:
Đáp án đúng là: A
Quan sát hình vẽ ta thấy:
+) Đồ thị \(\left( {{C_1}} \right)\) đi lên từ trái qua phải nên hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0;\, + \infty } \right)\), do đó \(a > 1\).
+) Đồ thị \(\left( {{C_2}} \right)\) đi xuống từ trái qua phải nên hàm số \(y = {\log _b}x\) nghịch biến trên \(\left( {0;\, + \infty } \right)\), do đó \(0 < b < 1\).
Vậy \(0 < b < 1 < a\).
Do đó, trong các đáp án đã cho, ta thấy đáp án A sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

Ta có \(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}\), \(S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}\).
Do đó \(A{C^2} = S{A^2} + S{C^2}\). Từ đó suy ra tam giác \(SAC\) vuông tại \(S\) hay \(SA \bot SC\). (1)
Vì \(M\) và \(N\) lần lượt là trung điểm của cạnh \(AD,\,\,SD\) nên \(MN\) là đường trung bình của tam giác \(SAD\), do đó \(MN{\rm{//}}SA\). (2)
Từ (1) và (2) suy ra \(MN \bot SC\).
Câu 2
Lời giải
Đáp án đúng là: B

+ Vì \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\] nên \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {ABCD} \right).\] Vậy đáp án A đúng.
+ Vì \(SA \subset \left( {SAB} \right)\) nên đáp án B sai.
+ Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\), do đó \[B\] là chiếu vuông góc của \[C\] lên \[\left( {SAB} \right).\] Vậy đáp án C đúng.
+ Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\), do đó \[D\] là chiếu vuông góc của \[C\] lên \[\left( {SAD} \right).\] Vậy đáp án D đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.