Tìm tập nghiệm \(S\) của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Điều kiện: \(x > \frac{1}{2}\).
Ta có \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\)\( \Leftrightarrow x + 1 > 2x - 1\) \(\left( {{\rm{do}}\,\,0 < \frac{1}{2} < 1} \right)\)
\( \Leftrightarrow x < 2\).
Kết hợp với điều kiện ta có \(\frac{1}{2} < x < 2\).
Vậy tập nghiệm \(S\) của bất phương trình đã cho là \(S = \left( {\frac{1}{2};2} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình chóp \[S.ABC\] có đáy là tam g (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/7-1766727496.png)
Ta có \[\left\{ \begin{array}{l}BC \bot SA\,\,\left( {{\rm{do}}\,\,SA \bot \left( {ABC} \right)} \right)\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\].
Ta lại có \[\left\{ \begin{array}{l}AH \bot SB\\AH \bot BC\end{array} \right. \Rightarrow AH \bot \left( {SBC} \right)\].
Câu 2
Lời giải
Đáp án đúng là: D
Ta có \[{a^{{{\log }_a}{a^2}}} = {a^2}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
