Câu hỏi:

26/12/2025 8 Lưu

Chọn khẳng định đúng trong các khẳng định sau:

A. Trong không gian, hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.
B. Trong không gian, hai đường thẳng vuông góc với nhau thì phải cắt nhau.
C. Trong không gian, hai đường thẳng không có điểm chung thì song song với nhau.
D. Trong không gian, hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

+ Theo lí thuyết ta thấy, trong không gian, hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau, vậy đáp án A đúng, từ đó suy ra đáp án B sai.

+ Đáp án C sai do hai đường thẳng không có điểm chung có thể song song hoặc chéo nhau.

+ Đáp án D sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể song song, hoặc cắt nhau, hoặc chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Đáp án đúng là: D (ảnh 1)

Ta có \(A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}\), \(S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}\).

Do đó \(A{C^2} = S{A^2} + S{C^2}\). Từ đó suy ra tam giác \(SAC\) vuông tại \(S\) hay \(SA \bot SC\). (1)

\(M\)\(N\) lần lượt là trung điểm của cạnh \(AD,\,\,SD\) nên \(MN\) là đường trung bình của tam giác \(SAD\), do đó \(MN{\rm{//}}SA\). (2)

Từ (1) và (2) suy ra \(MN \bot SC\).

Câu 2

A. \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {ABCD} \right).\]                                    
B. \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {SAB} \right).\]
C. \[B\] là chiếu vuông góc của \[C\] lên \[\left( {SAB} \right).\]
D. \[D\] là chiếu vuông góc của \[C\] lên \[\left( {SAD} \right).\]

Lời giải

Đáp án đúng là: B

Đáp án đúng là: B (ảnh 1)

+ Vì \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\] nên \[A\] là hình chiếu vuông góc của \[S\] lên \[\left( {ABCD} \right).\] Vậy đáp án A đúng.

+ Vì \(SA \subset \left( {SAB} \right)\) nên đáp án B sai.

+ Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\), do đó \[B\] là chiếu vuông góc của \[C\] lên \[\left( {SAB} \right).\] Vậy đáp án C đúng.

+ Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\), do đó \[D\] là chiếu vuông góc của \[C\] lên \[\left( {SAD} \right).\] Vậy đáp án D đúng.

Câu 3

A. \[\left[ {6;\, + \infty } \right)\].          
B. \[\left( {0;\, + \infty } \right)\].              
C. \[\left( {6;\, + \infty } \right)\].                         
D. \[\left( {3;\, + \infty } \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y' = \frac{{2{x^2} - 1}}{{4{x^2}}}\).        
B. \(y' = \frac{1}{2} + \frac{1}{{2{x^2}}}\).        
C. \(y' = \frac{x}{2} + \frac{1}{{2{x^2}}}\).      
D. \(y' = x - \frac{1}{{2{x^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(S = \left( {2; + \infty } \right)\).      
B. \(S = \left( { - 1;2} \right)\).                  
C. \(S = \left( { - \infty ;2} \right)\).                          
D. \(S = \left( {\frac{1}{2};2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP