(1,5 điểm)
Đo chiều cao (đơn vị là cm) của học sinh lớp 9A cho kết quả như sau;
156 157 164 166 166 165 157 154 155 158 160 163 163
161 162 159 159 160 160 160 159 158 160 160 158 163
162 162 162 161 162 161 163 161 163 161 164 166 165
165
Hãy lập bảng tần số ghép nhóm với các nhóm [155; 158), [158; 161), [161; 164), [164;167).
Tính tần số tương đối của nhóm [161; 164)
Đo chiều cao (đơn vị là cm) của học sinh lớp 9A cho kết quả như sau;
156 157 164 166 166 165 157 154 155 158 160 163 163
161 162 159 159 160 160 160 159 158 160 160 158 163
162 162 162 161 162 161 163 161 163 161 164 166 165
165
Hãy lập bảng tần số ghép nhóm với các nhóm [155; 158), [158; 161), [161; 164), [164;167).
Tính tần số tương đối của nhóm [161; 164)
Quảng cáo
Trả lời:
Bảng tần số ghép nhóm
|
Chiều cao (cm) |
[155; 158) |
[158; 161) |
[161; 164) |
[164;167) |
|
Số HS |
5 |
12 |
15 |
8 |
· Tần số tương đối của nhóm [161; 164) là
. 100% = 37,5%Câu hỏi cùng đoạn
Câu 2:
Trong túi có 6 quả bóng bàn kích thước và chất liệu như nhau gồm 2 quả màu đỏ, 2 quả màu trắng, 2 quả màu xanh. Không nhìn vào túi mà lấy ra 2 quả bóng. Tính xác suất của biến cố A lấy được ít nhất một quả bóng màu đỏ.
|
2) Kí hiệu các quả bóng đỏ trắng xanh là Đ1, Đ2, X1, X2, T1, T2 Không gian mẫu: Ω = { Đ1Đ2, X1X2, T1T2, Đ1X1, Đ1X2, Đ2X1, Đ2X2, Đ1T1, Đ1T2, Đ2T1, Đ2T2, X1T1, X1T2, X2T1, X2T2} |
|
Có 9 kết quả thuận lợi cho biến cố A là : Đ1Đ2, Đ1X1, Đ1X2, Đ2X1, Đ2X2, Đ1T1, Đ1T2, Đ2T1, Đ2T2 |
|
P(A) = |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
1) Bảng tần số ghép nhóm
|
||||||||||
|
1) Thay \[x = 16\](tmđk) vào biểu thức \[A = \frac{{3\sqrt x - 2}}{{1 - \sqrt x }}\]ta được \[A = \frac{{3\sqrt {16} - 2}}{{1 - \sqrt {16} }} = \frac{{3.4 - 2}}{{1 - 4}} = \frac{{12 - 2}}{{ - 3}} = - \frac{{10}}{3}\] Vậy khi \[x = 16\]thì \[A = - \frac{{10}}{3}\] |
||||||||||
|
2) Với x ≥ 0 , x ≠ 1 . Ta có: \[P = A + B = \frac{{3\sqrt x - 2}}{{1 - \sqrt x }} + \frac{{15\sqrt x - 11}}{{x + 2\sqrt x - 3}} - \frac{{2\sqrt x + 3}}{{\sqrt x + 3}}\] \[P = \frac{{\left( { - 3\sqrt x + 2} \right)\left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}} + \frac{{15\sqrt x - 11}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}} - \frac{{\left( {2\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\] \[P = \frac{{ - 3x - 7\sqrt x + 6 + 15\sqrt x - 11 - 2x - \sqrt x + 3}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\]\[ = \frac{{ - 5x + 7\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}} = \frac{{ - \left( {\sqrt x - 1} \right)\left( {5\sqrt x - 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\] \[P = \frac{{ - 5\sqrt x + 2}}{{\sqrt x + 3}}\] . Vậy với \[x \ge 0;\,x\, \ne \,1\] thì \[P = \frac{{ - 5\sqrt x + 2}}{{\sqrt x + 3}}\]
|
||||||||||
|
Có 9 kết quả thuận lợi cho biến cố A là : Đ1Đ2, Đ1X1, Đ1X2, Đ2X1, Đ2X2, Đ1T1, Đ1T2, Đ2T1, Đ2T2 |
||||||||||
|
3) Với \[x \ge 0;\,x\, \ne \,1\] ta có: \[m = P\left( {\sqrt x + 3} \right) = \frac{{ - 5\sqrt x + 2}}{{\sqrt x + 3}}.\left( {\sqrt x + 3} \right) = - 5\sqrt x + 2\] Với \[x \ge 0 \Rightarrow - 5\sqrt x \le 0 \Rightarrow - 5\sqrt x + 2 \le 2 \Rightarrow m \le 2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\] Mặt khác \[x\, \ne \,1\, \Rightarrow \,\sqrt x \, \ne 1\, \Rightarrow - 5\sqrt x \ne - 5 \Rightarrow - 5\sqrt x + 2 \ne - 3 \Rightarrow m \ne - 3\,\,\left( 2 \right)\] Từ (1) và (2) \[ \Rightarrow m \le 2;\,m \ne \, - 3\] Vậy với \[m \le 2;\,m\, \ne \, - 3\] thì có x thỏa mãn \[P\left( {\sqrt x + 3} \right) = m\] |
Lời giải
|
2) Kí hiệu các quả bóng đỏ trắng xanh là Đ1, Đ2, X1, X2, T1, T2 Không gian mẫu: Ω = { Đ1Đ2, X1X2, T1T2, Đ1X1, Đ1X2, Đ2X1, Đ2X2, Đ1T1, Đ1T2, Đ2T1, Đ2T2, X1T1, X1T2, X2T1, X2T2} |
|
Có 9 kết quả thuận lợi cho biến cố A là : Đ1Đ2, Đ1X1, Đ1X2, Đ2X1, Đ2X2, Đ1T1, Đ1T2, Đ2T1, Đ2T2 |
|
P(A) = |