(0,5 điểm) Cho \(P = \sqrt {a + 1} + \sqrt {b + 1} ,\) với \(a,b\) là các số không âm thỏa mãn \({a^2} + {b^2} = 2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của \(P.\)
Câu hỏi trong đề: Đề luyện thi Toán vào lớp 10 Hà Nội 2026 có đáp án - Đề 32 !!
Quảng cáo
Trả lời:
Áp dụng bất đẳng thức AM-GM ta có:
\(\sqrt 2 \sqrt {a + 1} \le \frac{{2 + a + 1}}{2} \le \frac{{3 + \frac{{{a^2} + 1}}{2}}}{2}\), dấu bằng xảy ra khi \[a = 1\]
Chứng minh tương tự suy ra \(P \le 2\sqrt 2 ,\) đẳng thức xảy ra khi \(a = b = 1.\)
Do đó, \(a\left( {\sqrt 2 - a} \right) + b\left( {\sqrt 2 - b} \right) \ge 0 \Leftrightarrow a + b \ge \frac{{{a^2} + {b^2}}}{{\sqrt 2 }} = \sqrt 2 \)
Ta có: \(\sqrt {a + 1} + \sqrt {b + 1} \ge 1 + \sqrt {a + b + 1} \ge 1 + \sqrt {\sqrt 2 + 1} \),
Vậy GTLN của \(P\) là \(2\sqrt 2 \) khi \(a = b = 1.\)
đẳng thức xảy ra khi \(\left\{ \begin{array}{l}a = 0\\b = \sqrt 2 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l}a = \sqrt 2 \\b = 0\end{array} \right..\)
Vậy GTLN của \(P\) là\(1 + \sqrt {\sqrt 2 + 1} \) khi\(\left\{ \begin{array}{l}a = 0\\b = \sqrt 2 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l}a = \sqrt 2 \\b = 0\end{array} \right..\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (triệu đồng), \(y\) (triệu đồng) lần lượt là số tiền mà cửa hàng đã vay từ ngân hàng A và B \(\left( {x > 0,y > 0} \right)\).
Cừa hàng đã vay tổng 600 triệu đồng nên: \(x + y = 600\)
Vì lãi suất của hai ngân hàng A và B lần lượt là \(8\% \)/năm và \(9\% \)/năm, tổng tiền lãi một năm phải trả cho cả hai ngân hàng là 50 triệu đồng nên: \(8\% .x + 9\% .y = 50\) hay \(8x + 9y = 5000\).
Ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 600\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\8x + 9y = 5000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\end{array} \right.\)
Từ phương trình \((1)\)ta có: \(y = 600 - x\).
Thế \(y = 600 - x\) vào phương trình \((2)\)ta được: \[8x + 9.(600 - x) = 5000\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3)\]
Giải phương trình \((3)\):
\[\begin{array}{l}8x + 9.(600 - x) = 5000\\8x + 5400 - 9x\,\,\,\, = 5000\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - x = - 400\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 400\end{array}\]
Ta thấy \(x = 400\) thỏa mãn \(x > 0\)
Thay \(x = 400\) vào phương trình \(y = 600 - x\), ta có: \(y = 600 - 400 = 200\)(thỏa mãn \(y > 0\))
Vậy số tiền của hàng đã vay từ ngân hàng A và B lần lượt là 400 triệu đồng và 200 triệu đồng.
Lời giải
Thể tích thân tên lửa chính là thể tích hình trụ có bán kính đáy\[\;R = \frac{6}{2} = 3\;(cm)\] và chiều cao \[h = 9\;(cm)\] nên \[{V_1} = \pi {R^2}h = \pi {.3^2}.9 = 81\pi (c{m^3})\]
-Thể tích đầu tên lửa chính là thể tích của hình nón có bán kính đấy\[\;R = \frac{6}{2} = 3\;(cm)\] và chiều cao \[h = 5\;(cm)\] nên \[{V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {.3^2}.5 = 15\pi \;(c{m^3})\]
- Thể tích của mô hình tên lửa là : \[V = {V_1} + {V_2} = 81\pi + 15\pi = 96\pi \;(c{m^3})\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
