(1,5 điểm)
Biểu đồ dưới đây biểu diễn kết quả khảo sát thành tích chạy \[100\,{\rm{m}}\] của một số học sinh

Có bao nhiêu học sinh chạy \[100\,{\rm{m}}\] hết ít hơn \[13\] giây và tìm tần số tương đối ghép nhóm của nhóm \(\left[ {13;14} \right)\)
Quảng cáo
Trả lời:
Có \[9\] học sinh chạy \[100\,{\rm{m}}\] hết ít hơn \[13\] giây.
Tần số tương đối ghép nhóm của nhóm \(\left[ {13;14} \right)\) là: \(\frac{4}{{3 + 6 + 4 + 2 + 1}} \cdot 100\% = 25\% \)
Câu hỏi cùng đoạn
Câu 2:
Bạn Long có \(n\) tấm thẻ cùng loại được đánh số từ \(1\) đến \(n\). Bạn Long rút ngẫu nhiên \(1\) tấm thẻ. Biết rằng xác suất của biến cố “Lấy được tấm thẻ ghi số có một chữ số” là \(0,25\). Hỏi bạn Long có bao nhiêu tấm thẻ?
Do \(n\) tấm thẻ cùng loại nên các thẻ có cùng khả năng đươc chọn. Có \(n\) kết quả có thể xảy ra.
Có \(9\) kết quả thuận lợi cho biến cố “Lấy được tấm thẻ ghi số có một chữ số”.
Vậy xác suất của biến cố “Lấy được tấm thẻ ghi số có một chữ số” là \(\frac{9}{n}\).
Ta có: \(\frac{9}{n} = 0,25\). Suy ra \(n = 36\).
Vậy bạn Long có \(36\) tấm thẻ.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi thời gian vòi \[I\]chảy một mình đầy bề là \[x\] (giờ \[x > 5\])
Thời gian vòi \[II\] chảy một mình đầy vể là \[y\] (giờ, \[y > 5\])
Thời gian cả hai voi cùng chảy đầy bể là 5 giờ.
Trong 1 giờ, vòi \[I\] chảy được \(\frac{1}{x}\) bể; vòi \[II\] chảy được \(\frac{1}{y}\) bể; cả hai vòi cùng chảy được \(\frac{1}{5}\) bề.
Do đó ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}{5}\) \(\left( 1 \right)\)
Trong 3 giờ vòi \[I\] chảy được \(\frac{3}{x}\)bề; Trong 2 giờ vòi \[II\] chảy được \(\frac{2}{y}\) bề. Cả hai vòi chảy được \(\frac{2}{3}\) bề.
Do đó ta có phương trình: \(\frac{3}{x} + \frac{4}{y} = \frac{2}{3}\) \(\left( 2 \right)\)
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{1}{x} + \frac{1}{y} = \frac{1}{5}\\\frac{3}{x} + \frac{4}{y} = \frac{2}{3}\end{array} \right.\)
Giải hệ phương trình ta được: \(\left\{ \begin{array}{l}x = 7,5\\y = 15\end{array} \right.\) (thỏa mãn điều kiện).
Vậy:
Thời gian vòi \[I\] chảy một mình đầy bể là 7,5 giờ.
Thời gian vòi \[II\] chảy một mình đẩy bể là 15 giờ.
Lời giải
a) Phần ống nhựa cắm vào phân nửa viên kẹo là hình trụ có độ cao \(h = 0,8\,{\rm{cm}}\), bán kính \(r = 0,2\,{\rm{cm}}\)
Thể tích phần ống nhựa cắm vào phân nửa viên kẹo là:
\({V_1} = \pi {r^2}h = \pi \,\,.\,\,{0,2^2}\,\,.\,\,1,6 \approx 0,2\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
b) Thể tích của viên kẹo tính cả phần ống nhựa cắm vào là:
\({V_2} = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \,\,.\,\,{1,6^3} \approx 17,16\,\left( {{\kern 1pt} {\rm{c}}{{\rm{m}}^3}} \right)\)
Thể tích thực của viên kẹo sau khi trừ phần ống nhựa:
\(V = {V_{\rm{2}}} - {V_{\rm{1}}} \approx 17,16 - 0,2 = 16,96\,{\kern 1pt} \left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.