Câu hỏi:

30/12/2025 49 Lưu

Tìm tập xác định D của hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\)

A. \(D = \left( { - \infty ; - 1} \right] \cup \left[ {3; + \infty } \right)\). 
B. \(D = \left[ { - 1;3} \right]\).
C. \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\). 
D. \(D = \left( { - 1;3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Hàm số \(y = {\log _2}\left( {{x^2} - 2x - 3} \right)\) xác định khi \({x^2} - 2x - 3 > 0 \Leftrightarrow \left[ \begin{array}{l}x <  - 1\\x > 3\end{array} \right.\).

Do đó tập xác định của hàm số là \(D = \left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = 2.\]

Câu 2

A. \[\frac{1}{2}\]. 
B. \[2\]. 
C. \[1\]. 
D. \[ - 2\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

\({\log _2}4 = {\log _2}{2^2} = 2\).

Câu 3

A. \[S = \left\{ {1;3} \right\}\]. 
B. \[S = \left\{ 1 \right\}\].  
C. \[S = \left\{ 2 \right\}\]. 
D. \[S = \left\{ { - 1;3} \right\}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x = 1\].  
B. \[x = 2\].
C. \[x = 3\]. 
D. \[x = 4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP