Cho hình lập phương \(ABCD.A'B'C'D'\), góc giữa hai đường thẳng \(A'B\) và \(B'C\) là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Vì \(A'B'//DC\) và \(A'B' = DC\) (do chúng cùng song song và bằng \(AB\)).
Do đó \(A'B'CD\) là hình bình hành, suy ra \(B'C//A'D\).
Khi đó \(\left( {A'B,B'C} \right) = \left( {A'B,A'D} \right) = \widehat {BA'D}\).
Do \(ABCD.A'B'C'D'\) là hình lập phương nên các mặt đều là hình vuông.
Do đó \(A'B = BD = A'D\), suy ra \(\Delta A'BD\) là tam giác đều. Suy ra \(\widehat {BA'D} = 60^\circ \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Có \[P(A).P(B) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} \ne P(AB) = \frac{1}{2}\].
Do đó \(A\) và \(B\) không độc lập.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Có \(SA \bot \left( {ABCD} \right)\) nên \(AD\) là hình chiếu của \(SD\) trên mặt phẳng \(\left( {ABCD} \right)\).
Do đó góc giữa đường thẳng \(SD\) và mặt phẳng \((ABCD)\)là \(\widehat {SDA}\).
Xét \(\Delta SDA\) vuông tại \(A\), có \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SDA} = 60^\circ \).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
