Câu hỏi:

30/12/2025 2 Lưu

Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right)\), đáy \(ABC\) là tam giác đều cạnh \(a\) và \(SA = \frac{{3a}}{2}\).  Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

A. \(60^\circ \).     
B. \(90^\circ \).     
C. \(30^\circ \).     
D. \(45^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Cho hình chóp S.ABC có SA vuông góc (ABC), đáy ABC là tam giác đều cạnh a và SA = 3a/2.  Tính số đo góc phẳng nhị diện [S,BC,A]. (ảnh 1)

Gọi \(I\) là trung điểm \(BC \Rightarrow AI \bot BC\) (vì \(ABC\) là tam giác đều).

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot SI\).

Khi đó: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\SI \bot BC\\AI \bot BC\end{array} \right. \Rightarrow \left[ {S,BC,A} \right] = \widehat {SIA}\).

Mà \(\Delta ABC\) đều cạnh \(a \Rightarrow AI = \frac{{a\sqrt 3 }}{2}\).

Xét \(\Delta SAI\) vuông tại \(A\), ta có: \({\rm{tan}}\widehat {SIA} = \frac{{SA}}{{AI}} = \sqrt 3  \Rightarrow \widehat {SIA} = 60^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\ln \left( {a + b} \right) = \ln a + \ln b\).
B. \(\ln \left( {ab} \right) = \ln a.\ln b\).
C. \(\ln \left( {{a^b}} \right) = \ln b.\ln a\).  
D. \(\ln \left( {ab} \right) = \ln a + \ln b\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

\(\ln \left( {ab} \right) = \ln a + \ln b\).

Câu 2

A. \[P = {x^{\frac{1}{8}}}\].  
B. \[P = {x^2}\]. 
C. \[P = \sqrt x \].  
D. \[P = {x^{\frac{2}{9}}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\(P = {x^{\frac{1}{3}}}.\sqrt[6]{x}\)\( = {x^{\frac{1}{3}}}.{x^{\frac{1}{6}}}\)\( = {x^{\frac{1}{2}}} = \sqrt x \).

Câu 4

A. \(y' = \frac{1}{x} + 2x\).                 
B. \[y' =  - \frac{1}{{{x^2}}} + 2\].     
C. \(y' = \frac{1}{{{x^2}}} + 2\).             
D. \(y' =  - \frac{1}{x} + 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {{x^a}} \right)^b} = {x^{ab}}\).  
B. \({\left( {{x^a}} \right)^b} = {x^{a + b}}\).  
C. \({\left( {{x^a}} \right)^b} = {x^{\frac{b}{a}}}\).\
D. \({\left( {{x^a}} \right)^b} = {x^{{a^b}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP