Từ thành phố \(A\) đến thành phố \(B\) có 4 con đường, từ thành phố \(B\) đến thành phố \(C\) có 3 con đường. Có bao nhiêu cách đi từ thành phố \(A\) đến thành phố \(C\) phải đi qua thành phố \(B\)?

Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 10 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Cách để đi từ thành phố \(A\) đến thành phố \(C\) phải đi qua thành phố \(B\) gồm 2 giai đoạn:
- Giai đoạn 1: Đi từ thành phố \(A\) đến thành phố \(B\) có 4 cách.
- Giai đoạn 2: Ứng với mỗi cách của giai đoạn 1, từ thành phố \(B\) đến thành phố \(C\) có 3 cách.
Áp dụng quy tắc nhân có \(4.3 = 12\) cách để đi từ thành phố \(A\) đến thành phố \(C\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Số cách chọn 2 số chẵn trong tập hợp \[\left\{ {2;4;6;8} \right\}\] là: \[C_4^2\] cách.
Số cách chọn 2 số lẻ trong tập hợp \[\left\{ {1;3;5;7;9} \right\}\] là: \[C_5^2\] cách.
Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: \[4!\] cách.
Vậy có \[4!\;.C_4^2.C_5^2\] số tự nhiên thỏa mãn yêu cầu bài toán.
Lời giải
Để tạo đề kiểm tra gồm 5 câu hỏi sao cho có đủ ba loại câu hỏi và có đúng 2 câu hỏi dễ sẽ có các phương án sau:
- Phương án 1: Đề gồm 2 câu hỏi dễ, 2 câu trung bình và 1 câu khó có \(C_{10}^2.C_6^2.C_4^1 = 2700\) đề.
- Phương án 2: Đề gồm \(2\) câu hỏi dễ, \(1\) câu trung bình và \(2\) câu khó có \(C_{10}^2.C_6^1.C_4^2 = 1620\) đề.
Áp dụng quy tắc cộng, ta có \(2700 + 1620 = \,4\,\,320\) đề.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.